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Foreword 

ISO (the International Organization for Standardization) is a worldwide federation of national standards 
bodies (ISO member bodies). The work of preparing International Standards is normally carried out 
through ISO technical committees. Each member body interested in a subject for which a technical 
committee has been established has the right to be represented on that committee. International 
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO 
collaborates closely with the International Electrotechnical Commission (IEC) on all matters of 
electrotechnical standardization. 

The procedures used to develop this document and those intended for its further maintenance are 
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the 
different types of ISO documents should be noted. This document was drafted in accordance with the 
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives). 

Attention is drawn to the possibility that some of the elements of this document may be the subject of 
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any 
patent rights identified during the development of the document will be in the Introduction and/or on 
the ISO list of patent declarations received (see www.iso.org/patents). 

Any trade name used in this document is information given for the convenience of users and does not 
constitute an endorsement. 

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and 
expressions related to conformity assessment, as well as information about ISO's adherence to the World 
Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see 
www.iso.org/iso/foreword.html. 

This document was prepared by Technical Committee ISO/TC 184, “Automation systems and 
integration”, Subcommittee SC 4, “Industrial data”. 

A list of all parts in the ISO 15926 series can be found on the ISO website. 

Any feedback or questions on this document should be directed to the user’s national standards body. A 
complete listing of these bodies can be found at www.iso.org/members.html. 

https://www.iso.org/directives-and-policies.html
https://www.iso.org/iso-standards-and-patents.html
https://www.iso.org/foreword-supplementary-information.html
https://www.iso.org/members.html
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Introduction 

The primary purpose of ISO 15926 is to provide a foundation ontology to support the integration and 
sharing of data related to the lifecycle of a process plant in such a way that it is consistent, unambiguous, 
and minimizing the number of ways something could be expressed.  

The lifecycle dimension of ISO 15926 was captured by a conceptualisation that is intrinsically temporal. 
This so-called 4D approach underlies the data model of ISO 15926.  

Originally, ISO 15926 was developed as a data model that provided a top-level ontology plus a meta model 
that allowed the ontology to be extended by reference data. However, more recently, with the advent of 
OWL 2 there has been interest in OWL versions of the top-level ontology. This has resulted in ISO/TS 
15926-12. 

In all this, reasoning has not been a priority. However, it is not surprising, given the reasoning support 
for OWL ontologies using Direct Semantics, that there should be interest in developing ontologies to 
support the process industries that take advantage of this capability. 

This standard contains the specification of an OWL 2 Direct Semantics [5] ontology that builds on the ISO 
15926-2 Data model [1]. Building such an ontology requires several adaptations of the data model in ISO 
15926-2 to the direct semantics framework of OWL 2. In particular, lifecycle modelling needs a different 
representation in this standard than the 4D approach to lifecycle modelling in ISO 15926-2. The reason 
for this is that the 4D perspective can only be captured in a direct semantics ontology in an incomplete 
way. An OWL 2 implementation of a 4D approach can hence not come along with strong reasoning 
services. 

The approach to lifecycle modeling in this standard is based on three modelling patterns that can be used 
to design a lifecycle information ontology. The three modelling patterns are not temporal in nature, but 
temporal information can be added through time-related properties, thus enabling a full lifecycle 
information model with incorporated time. The modelling patterns are illustrated through an 
interpretation of the lifecycle information model of ISO/IEC 81346-1.  

The ontology in this standard is designed so as to provide classes and properties with the possibility of 
efficient reasoning support. To achieve this, the ontology picks up on best practice modelling in the wider 
industrial ontology community. Examples of best practice modelling include: 

1. The application of ontology modularisation techniques and the organization of ontologies in strict 
dependent hierarchies, where domain independent ontologies occupy the top levels.  

2. Recommendations on best practice modelling from authors of well-known upper ontologies like 
ISO/IEC 21838-2, the Basic Formal Ontology (BFO)1 and DOLCE.2  

3. A careful use of OWL 2 metamodeling based on SKOS specification [10]. 
4. Restrict OWL 2 interpretation to OWL 2 Direct Semantics [5].  
5. Limit the use of certain OWL 2 constructors like property cardinality restrictions [9]. 

These principles have several consequences for an OWL implementation ontology that is based on ISO/TS 
15926-2. One consequence is that the information that ISO/TS 15926-2 has covered at the class of class 
level needs to be treated at the level of classes by the OWL implementation ontology.  In order to be 
targeted by OWL 2 reasoning, the representation of this information has to be changed.   

 
1 https://www.iso.org/standard/74572.html  
2 http://wonderweb.man.ac.uk/dissemination.shtml    

http://wonderweb.man.ac.uk/dissemination.shtml
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EXAMPLE A particular mass such as "10 kilograms" is regarded as a class in ISO 15926-2. This 
information must be represented in an OWL ontology through individuals and object properties in order 
to enable reasoning support, as illustrated in Appendix E. 

This standard reconciles the needs of the 15926 community to converge and align with existent W3C 
recommendations for semantic technologies. OWL 2 W3C3 recommendation [6] defines five different 
syntaxes, including the Manchester syntax [7] which is used in this document. 

The use of the ontology in this standard as an upper ontology is illustrated by modelling various real-
world use cases from industry. 

A group of oil and gas operators and contractors in Norway has more than five years of experience using 
an ontology that is essentially equivalent to the ontology in this standard. The ontology is successfully 
serving a multitude of large industry projects. A key learning from the experience gathered in these 
projects is that assistance from automated reasoning is crucial for managing the complexity of domains 
and disciplines. Reasoning proved crucial for building reference data that could be easily reused and that 
could serve a wide range of applications. In particular, automated reasoning enables engineers and 
developers to discover implicit facts, such as duplicate classes, and hidden inconsistencies in reference 
data. Reasoning also plays an essential role in end-user tools that use the ontology for the interpretation 
of requirements and verification of designs. The end-user tools help the engineers to simplify the correct 
application of standards, enabling a sound continuous extension of the ontology without any need for 
ontology engineers to be involved.  

  

 
  

 
3 https://www.w3.org/  

https://www.w3.org/
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Purpose 

The purpose of ISO 15926-14 is to meet needs for OWL 2 ontologies that are based on ISO 15926-2, that 
enable efficient reasoning and that capture lifecycle information.  

A specific purpose is to demonstrate lifecycle modelling through a representation of the lifecycle model 
of ISO/IEC 81346-1.  

Another specific purpose is to exemplify how this standard can be used to develop industrial ontologies 
through various real-world use cases from industy. 
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Title (Industrial automation systems and integration — Integration of 
life-cycle data for process plants including oil and gas production 
facilities — Part 14: Industrial top-level ontology) 

1 Scope 

This standard contains the specification of ISO 15926-14. This is an ontology compliant with OWL 2 
Direct Semantics that builds on the ISO 15926-2 Data model [1]. The ontology is intended to be used in 
conjunction with reasoning services over OWL 2 ontologies.  

ISO 15926-14 is an upper ontology, i.e., it defines general and domain independent terms to facilitate 
interoperability of ontologies across multiple domains. To facilitate use in the development lifecycle 
phase, ISO 15926-14 includes terms for defining restrictions identified in the design phase and terms for 
the transition from design to procurement. This includes in particular class terms for physical objects, 
systems, functions and functional objects.  

Using these terms one can capture the evolution of functional objects from an early design phase to the 
functional locations of tag numbers and capture the distinction between a tag number and a physical 
object installed at the tag. This feature is exploited in the modelling patterns for lifecycle information.  

The approach to lifecycle information though modelling patterns is exemplified through a representation 
of the lifecycle model of ISO/IEC 81346-1. 

Reasoning services in scope include: 

• Checking consistency of an ontology  
• Reasoning over formalized class definitions, in particular for detection of duplicate classes 
• Checking consistency of classes with respect to restrictions, in particular checking consistency 

of product classes with respect to classes that capture restrictions from design 
• Automated classification of objects based on property values 

 

2  Normative references 

The following documents are referred to in the text in such a way that some or all of their content 
constitutes requirements of this document. For dated references, only the edition cited applies. For 
undated references, the latest edition of the referenced document (including any amendments) applies. 

ISO 15926-2:2003, Industrial automation systems and integration — Integration of life-cycle data for 
process plants including oil and gas production facilities — Part 2: Data model 

ISO/IEC 21838-2, Information technology — Top-level ontologies (TLO) — Part 2: Basic Formal Ontology 
(BFO) 

OWL 2 Web Ontology Language, Structural Specification and Functional-Style Syntax (Second Edition). W3C 
World Wide Web Consortium Recommendation 11 December 2012 (https://www.w3.org/TR/owl2-
syntax/) 

OWL 2 Web Ontology Language, Direct Semantics (Second Edition). W3C World Wide Web Consortium 
Recommendation 11 December 2012 (https://www.w3.org/TR/owl2-direct-semantics/) 

https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-direct-semantics/
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OWL 2 Web Ontology Language, Manchester Syntax (Second Edition). W3C World Wide Web Consortium 
Working Group Note 11 December 2012 (https://www.w3.org/TR/owl2-manchester-syntax/) 

SKOS Simple Knowledge Organization System Reference. W3C World Wide Web Consortium 
Recommendation 18 August 2009 (https://www.w3.org/TR/skos-reference/) 

3 Terms and definitions 

No terms and definitions are listed in this document. 

ISO and IEC maintain terminological databases for use in standardization at the following addresses: 

— ISO Online browsing platform: available at https://www.iso.org/obp 

— IEC Electropedia: available at http://www.electropedia.org/ 

4 Basic concepts and assumptions 

The standard is based on the fundamental concepts and assumptions laid out in ISO 15926-2. In addition, 
we need to account for certain assumptions regarding modelling lifecycle information and reasoning. 

A lifecycle information model addresses the objects of an information model as they are created and 
evolve through the life cycle until they cease to exist.  

A lifecycle information model will typically have to address challenges that are not easily solved by more 
traditional data models. These may in particular include the following: 

- Representation of objects referenced by different identifier systems. For example, a motor can in 
design documentation be identified by a tag number and, in the maintenance system, be identified 
by an equipment number. 

- Structuring of asset information into a coherent whole. Today, technical information is, as a rule, 
fragmented and spread over a large number of different sources and formats. A lifecycle ontology 
can provide a structure into which the different fragments of information can be placed, so the 
relationship between the fragments is transparent. 

- Evolution of resources, including objects being split and merged. 

To support such representation three modelling patterns have been identified.   

The Specification pattern. This pattern, addressed in Section F.1.1, makes use of metamodeling features 
of OWL to treat specifications as expressions on a meta-level with respect to the underlying ontology.  

The Instantiation pattern. The object property installedAs is used to relate a functional object to an 
installed physical object. Section F.1.2 addresses how properties of the installed object can be verified 
against the properties of the functional object which capture the specification; see also Section G.6.  

The Resource evolution pattern. This pattern makes use of metamodeling features of OWL to describe 
how resources change over time while avoiding to model time in the ontology; cf. Section F.1.3. Three 
operations that change resources are distinguished: transformation, merge and split. 

Note that the modelling patterns are provided to support the design of lifecycle ontologies. As a case in 
point, Annex F provides an interpretation of the lifecycle model of ISO/IEC 81346 as an ontology based 
on this part using the three modelling patterns described above.  

https://www.w3.org/TR/owl2-manchester-syntax/
https://www.w3.org/TR/skos-reference/
https://www.iso.org/obp
http://www.electropedia.org/
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5 Relation to reference data 

The following subsections are to clarify the relationship of this standard to other parts of ISO 15926. 

5.1 Relation to Part 2 

This standard is based on the data model of Part 2, but with a different approach to modelling lifecycle 
information.  

The lifecycle dimension of ISO 15926-2 is captured by a 4D conceptualisation that is intrinsically 
temporal. For instance, the concept of a possible individual is understood as a thing that could exist in 
space and time and a lifecycle stage is modelled as an essentially temporal relationship between two 
possible individuals.  

The 4D perspective is not completely expressible in Description Logic and hence cannot be supported by 
complete reasoning procedures in OWL 2. OWL 2 lacks, in particular, built-in support for temporal 
language constructions. Therefore three modelling patterns have been identified as a replacement for the 
representation of lifecycle information. 

• The Installation modelling pattern in this standard captures the relation between a functional 
object and an installed physical object. This relation would in the framework of Part 2 be captured 
as a relation between a possible individual and an actual individual.  

• The Specification modelling pattern captures modelling that according to Part 2 would be done 
through class of class constructions.  

• The Resource evolution pattern captures modelling that according to Part 2 would be done by 
relating temporal snapshots of objects in the 4D space. JOHAN: point to earlier versions of 
something using the dedicated annotation properties under originatesFrom: transformFrom, 
mergeFrom and splitFrom. 

5.2 Relation to Part 4 

To be completed (also explain relationship to READI reference data) 

Core reference data is, as a rule, designed with specific modelling patterns in mind and a wide range of 
such patterns is described in the ISO 15926-2 documentation, with extensions in subsequent parts; see 
Annex B for more details.  

Reference data may be incorporated into Part 14 compliant ontologies, provided that care is taken to 
ensure consistency with the restrictions on the upper ontology. 

5.3 Relation to Part 7, 8, 11 

To be completed. 

5.4 Relationship to Part 12 

ISO 15926-14 was developed in parallel with ISO/TS 15926-12 [2]. ISO/TS 15926-12 is an OWL 2 RDF-
based Semantics ontology that deviates as little as possible from the original ISO 15926-2. In particular 
Part 12 adopts the same 4D conception as Part 2, with only minor changes such as introducing the term 
non-actual individuals.  
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Since ISO 15926-14 does not share the 4D conception of ISO/TS 15926-12, it is not a conformant profile 
of ISO 15926-12.  

6  Ontology  

The ontology in this standard is formulated in the OWL2 Web Ontology Language [9] and it is intended 
to be used for reasoning under OWL 2 Direct Semantics [5], which corresponds to the semantics of the 
Description Logic SROIQ(D) [11, 12].  

The ontology is specifically designed to lay the foundation for efficient reasoning. The possibility of using 
reasoning is tightly linked to the language constructs in OWL 2 that enable specification of so-called 
complex classes. One can view complex classes as classes with formalised definitions that one can reason 
over. To facilitate the definition of complex classes several semantically significant features are built into 
the ontology as object properties rather than as primitive classes. Where complex classes can easily be 
defined from object properties, these classes are not explicitly included in the ontology.  

The terms of the ontology are documented in Annex A. Every term is presented in a dedicated section 
containing a definition in OWL 2 Manchester Syntax [7] as well as references to use cases in Annex G, 
where the use of the term is exemplified.  

The definitions in the ontology file referenced in Annex C take precendence over what is documented in 
Annex A. 

Conventions for naming shortcut data properties and inverse object properties are provided in Annex D. 

Reasoning services include classification of objects, consistency checking and duplicate detection. 
Annex E provides a detailed account on reasoning services with the ontology.  

7 Use Cases 

The use of the ontology in this standard as an upper ontology is illustrated by modelling various real-
world use cases from industry. A description of each of the use cases together with a modelling example 
is provided in Annex G. 

The following use cases are included:  

1. Events and alarms 
2. Physical-spatial  
3. Piping and Instrumentation Diagram (P&ID)  
4. Software  
5. Product catalog 
6. Aspect-based reference designation system  
7. Requirements  
8. Bill of Material (BoM) and Bill of Process (BoP)  
9. Physical quantities and units of measurement  
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Annex A  
(normative) 

 
ISO 15926-14 Ontology 

This section defines and documents the entities of the ISO 15926-14 upper ontology. The ontology 
imposes only minimal constraints and category distinctions, to not get in the way of building application 
ontologies for a broad range of use cases. Figure 1 shows the classes, object properties, and data 
properties included. Annex B includes a mapping between the ontology in this document and relevant 
parts of ISO 15926-2. Annex C includes the ontology file. Several term definitions and descriptions 
provided in this section are to be completed. 

The ISO 15926-14 OWL interpretation and adaption of ISO 15926-2 is informed by the research literature 
in applied ontologies, and by the upper ontologies ISO/IEC 21838-2 (BFO) and DOLCE. For example, the 
classes Function and InformationObject have been recast to closely match their same-named counterparts 
in BFO and IAO. We believe the ontology as presented here is consistent with the original intentions of 
ISO 15926-2. Unless otherwise stated, the meaning of classes follows their meaning in ISO 15926-2.  

Observe that the class hierarchy in Figure 1 contains merely three ultimate classes: Activity, Aspect and 
Object. Furthermore, the number of subclasses at the level below is limited. This feature is pragmatically 
built in to make the top-level ontology easier to grasp for new users.  

The classes of are defined and documented in Section 7.2, the object properties in Section 7.3, the data 
properties in Section 7.4 and the annotation properties in Section 7.5.  

TODO Note that we are making references to other parts of ISO 15926 in the form of annotation 
properties that point to classes in the “lis2” and “lis12” namespaces, i.e., entities in the Part 2 (PCA 
rendering 2008) and Part 12 (ISO 2018) ontologies. These are embedded in the Part 14 OWL ontology, 
to be conveniently usable in mappings. 

Several industrial uses cases are presented in Annex C to illustrate the use of the ISO 15926-14 ontology.  
For the sake of better readability, namespaces have been removed. OWL 2 axioms are expressed in the 
OWL 2 Manchester syntax [7]. Although simple and informal, the examples cover a broad range of 
representation tasks.  
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 Declarations 

 Prefixes 

Prefix: lis: <http://standards.iso.org/iso/15926/part14/> 
Prefix: owl: <http://www.w3.org/2002/07/owl#> 
Prefix: rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
Prefix: xml: <http://www.w3.org/XML/1998/namespace> 
Prefix: xsd: <http://www.w3.org/2001/XMLSchema#> 
Prefix: rdfs: <http://www.w3.org/2000/01/rdf-schema#> 
Prefix: skos: <http://www.w3.org/2004/02/skos/core#> 
Prefix: pav: <http://purl.org/pav/> 
Prefix: lis2: <http://rds.posccaesar.org/2008/02/OWL/ISO-15926-2_2003#> 
Prefix: lis12: <http://standards.iso.org/iso/15926/ontology/life-cycle-integration/> 
Prefix: obo: <http://purl.obolibrary.org/obo/> 

 Ontology 

Ontology: <http://standards.iso.org/iso/15926/part14> 
<http://standards.iso.org/iso/15926/part14/1.1> 
     Annotations: rdfs:label "ISO 15926-14 upper ontology", 
       owl:versionInfo "Revised 2020-09-10", 
       pav:previousVersion <http://standards.iso.org/iso/15926/part14/1.0>, 
       rdfs:comment "The ISO 15926-14 upper ontology is an OWL 2 DL rendering of the ISO 15926-2 
data model." 

 Classes 

The ISO 15926-14 ontology has 33 OWL classes. Figure 1 presents a taxonomy of the classes. The 
following are the three ultimate classes: 

• Activity covers processes in which objects participate.  
• Aspect covers entities that represent attributes and properties of objects.  
• Object covers the main, independent, entities of interest.  

 
The classes Activity, Aspect and Object are set to be mutually disjoint.  
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Figure 1 – Classes in ISO 15926-14 ontology    

 
 
The following subsections provide details on their respective subclasses.  

 Activity 

Class: lis:Activity 
   Annotations:  
       rdfs:label "Activity", skos:prefLabel "Activity" 

Description to be completed. 

The class Activity distinguishes two subclasses, Event and PeriodInTime. 

  Activity > Event  

Class: lis:Event 
   Annotations:  
       rdfs:label "Event", skos:prefLabel "Event" 
   SubClassOf:  
       lis:Activity 

Description to be completed. 
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For examples of Event in context, see use cases B.1 and B.10. 

The class Event has one subclass, PointInTime. 

A.2.1.1.1 Activity > Event > PointInTime 

Class: lis:PointInTime 
   Annotations:  
       rdfs:label "PointInTime", skos:prefLabel "PointInTime" 
   SubClassOf:  
       lis:Event 

Description to be completed. 

 Activity > PeriodInTime 

Class: lis:PeriodInTime 
   Annotations:  
       rdfs:label "PeriodInTime", skos:prefLabel "PeriodInTime" 
   SubClassOf:  
       lis:Activity 

Description to be completed. 

 Aspect 

Class: lis:Aspect 
   Annotations:  
       rdfs:label "Aspect", skos:prefLabel "Aspect"  

Description to be completed. 

The class Aspect distinguishes two subclasses, Quality and RealizableEntity. 

 Aspect > Quality 

Class: lis:Quality 
   Annotations:  
       rdfs:label "Quality", skos:prefLabel "Quality" 
   SubClassOf:  
       lis:Aspect 

The class Quality and its subclass PhysicalQuantity are directly inspired by corresponding classes 
included in the DOLCE and BFO upper ontologies. An alternative I have considered is Property, which 
may be re-interpreted vs. Part 2 into ranging over individual properties, but «quality» seems to be a term 
that better matches colloquial use (for referring to individual qualities). Furthermore, in the CD version 
of Part 12, «Property» has been deprecated for «Quantity», which is not obviously a better choice for the 
entities in question. 

Description to be completed. 

The class Quality has one subclass, PhysicalQuantity. 
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A.2.2.1.1 Aspect > Quality > PhysicalQuantity 

Class: lis:PhysicalQuantity 
   Annotations:  
       rdfs:label "PhysicalQuantity", skos:prefLabel "PhysicalQuantity" 
   SubClassOf:  
       lis:Quality 

This class implements the ISO 15926-2 notion of Property, inspired by corresponding classes included in 
DOLCE and BFO. Mass, Pressure, and Temperature are examples of PhysicalQuantity subclasses likely to 
be included in any industrial ontology.  

For examples of PhysicalQuantity in context, see use cases B.5 and B.10. 

Description to be completed. 

 Aspect > RealizableEntity 

Class: lis:RealizableEntity 
   Annotations:  
       rdfs:label "RealizableEntity", 
       rdfs:seeAlso <http://purl.obolibrary.org/obo/BFO_0000017>, 
       skos:prefLabel "RealizableEntity" 
   SubClassOf:  
       lis:Aspect 

 
Description to be completed. 

The class RealizableEntity distinguishes two subclasses, Disposition and Role. 

A.2.2.2.1 Aspect > Realizability > Disposition 

Class: lis:Disposition 
   Annotations:  
       rdfs:comment "Inspired by the BFO class \"disposition\" (BFO_0000016).", 
       rdfs:label "Disposition", 
       rdfs:seeAlso <http://purl.obolibrary.org/obo/BFO_0000016>, 
       skos:prefLabel "Disposition" 
   SubClassOf:  
       lis:RealizableEntity   

 
Description to be completed. 

The class Disposition has one subclass, Function. 

A.2.2.2.1.1 Aspect > Realizability > Disposition > Function 

Class: lis:Function 
   Annotations:  
       rdfs:comment "Inspired by the BFO class \"function\" (BFO_0000034).", 
       rdfs:label "Function", 
       rdfs:seeAlso <http://purl.obolibrary.org/obo/BFO_0000034>, 
       skos:prefLabel "Function" 
   SubClassOf:  
       lis:Disposition 
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Description to be completed. 

For examples of Function in context, see use cases B.1, B.3, B.4, B.5, and B.7. 

A.2.2.2.2 Aspect > Realizability > Role 

Class: lis:Role 
   Annotations:  
       rdfs:comment "This class is motivated in the Part 2 'role' entity type, and in the same-
named BFO class. Part 2 is not very specific about the meaning of roles, but the examples are 
clear enough. There is still much disagreement in the ontology field about how roles should be 
understood and modelled.", 
       rdfs:label "Role", skos:prefLabel "Role" 
   SubClassOf:  
       lis:RealizableEntity 

 
The use of this class should follow the advice of the same-named BFO class. 

Description to be completed. 

 Object  

Class: lis:Object 
   Annotations:  
       rdfs:label "Object", skos:prefLabel "Object" 

 
The class Object distinguishes five subclasses, FunctionalObject, InformationObject, Location, 
Organization and PhysicalObject. These subclasses are set to be mutually disjoint. 

DisjointClasses:  
   lis:InformationObject,lis:Location,lis:Organization,lis:PhysicalObject 

 Object  > FunctionalObject 

Class: lis:FunctionalObject 
   Annotations:  
       rdfs:comment "A functional object is part of a system, and has a function whose realisation 
contributes to the performance of the system as a whole.", 
       rdfs:label "FunctionalObject", 
       skos:example "An item on a Process Flow Diagram (PFD) or Process and Instrumentation 
Diagram (P&ID) should be classified as a FunctionalObject.", 
       skos:note "A class of artefacts such as Pump is not a subclass of FunctionalObject: a pump 
that is not in service is not part of a system. However, an individual functional location should 
in general be given some high-level artefact classification in addition to its description as part 
of a system.", 
       skos:prefLabel "FunctionalObject" 
   SubClassOf:  
       lis:Object, 
       lis:functionalPartOf some lis:System, 
       lis:hasFunction some lis:Function 

 
Every object in an industrial plant is there for a purpose, and the objects are arranged into systems of 
“functional objects”. Plant design assigns one or more functions to each functional object. The complex 
function of a system is realized when its functional objects participate in activities according to their 
designed purpose. 
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The class FunctionalObject has one subclass, System. 

A.2.3.1.1 Object  > FunctionalObject > System 

Class: lis:System 
   Annotations:  
       rdfs:comment "A system is a complex of functional parts working together. Each part 
contributes to the realisation of the system's function (though not necessarily every part in 
every performance of the system).", 
       rdfs:label "System", 
       skos:note "A functional location that does not itself have functional parts is not a 
system.", 
       skos:prefLabel "System" 
   SubClassOf:  
       lis:FunctionalObject, 
       lis:hasFunctionalPart some lis:FunctionalObject 

 
Description to be completed. 
 

 Object > InformationObject 

Class: lis:InformationObject 
   Annotations:  
       rdfs:label "InformationObject", skos:prefLabel "InformationObject" 
   SubClassOf:  
       lis:Object 

 
Description to be completed. 

For examples of InformationObject  in context, see use cases B.1, B.4, B.5, B.10. 

The class InformationObject is set to be mutually disjoint with the classes Location, PhysicalObject and 
Organization.  

The class InformationObject distinguishes two subclasses, QuantityDatum and UnitOfMeasure. 

A.2.3.2.1 Object > InformationObject > QuantityDatum 

Class: lis:QuantityDatum 
   Annotations:  
       rdfs:comment "This class is inspired by the class \"measurement datum\" of the Information 
Artefact Ontology. The change of wording from \"measurement\" to \"quantity\" is intended to 
support cases where measurement is not involved, such as with nominal values.", 
       rdfs:label "QuantityDatum", 
       rdfs:seeAlso <http://purl.obolibrary.org/obo/IAO_0000109>, 
       skos:prefLabel "QuantityDatum" 
   SubClassOf:  
       lis:InformationObject 

 
The bulk of industrial data consists of measured, estimated, and nominal values of physical quantities 
that apply to objects. Members of this class represent the fixing of physical quantities to numbers on a 
scale. The representation pattern for this class is inspired by that of “measurement datum” 
(IAO_0000109) of the Information Artefact Ontology (IAO). 

The class QuantityDatum has one subclass, ScalarQuantityDatum. 
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A.2.3.2.1.1 Object > InformationObject > QuantityDatum > ScalarQuantityDatum 

Class: lis:ScalarQuantityDatum 
   Annotations:  
       rdfs:comment "A scalar quantity datum has a unique unit of measure and a unique numeric 
value. This class is inspired by the class \"scalar measurement datum\" of the Information 
Artefact Ontology.", 
       rdfs:label "ScalarQuantityDatum", 
       rdfs:seeAlso <http://purl.obolibrary.org/obo/IAO_0000032>, 
       skos:prefLabel "ScalarQuantityDatum" 
   SubClassOf:  
       lis:QuantityDatum, 
       lis:datumUOM some lis:UnitOfMeasure, 
       lis:datumValue some rdfs:Literal 

 
A scalar quantity datum specializes QuantityDatum to require a unique unit of measure and a unique 
numeric value, following “scalar measurement datum” (IAO_0000032) of IAO.  

The class ScalarQuantityDatum is subsumed by the domains of the object property datumUOM and the 
data property datumValue, respectively. 

A.2.3.2.2 Object > InformationObject > UnitOfMeasure 

Class: lis:UnitOfMeasure 
   Annotations:  
       rdfs:label "UnitOfMeasure", skos:prefLabel "UnitOfMeasure" 
   SubClassOf:  
       lis:InformationObject 

 
Description to be completed. 
 
The class UnitOfMeasure has one subclass, Scale. 

A.2.3.2.2.1 Object > InformationObject > UnitOfMeasure > Scale 

Class: lis:Scale 
   Annotations:  
       rdfs:label "Scale", skos:prefLabel "Scale" 
   SubClassOf:  
       lis:UnitOfMeasure 

 
Members of this class are units of measure for quantifiable physical qualities, such as “kilogram”, “pascal”, 
“bar”, “kelvin”, “Celsius”.  
 

 Object > Location 

Class: lis:Location 
   Annotations:  
       rdfs:label "Location", skos:prefLabel "Location" 
   SubClassOf:  
       lis:Object 

  
Description to be completed. 
 
For examples of Location in context, see use cases B.2 and B.7. 
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The class Location is set to be mutually disjoint with the classes InformationObject, PhysicalObject and 
Organization.  

The class Location distinguishes two subclasses, Site and SpatialLocation. 

A.2.3.3.1 Object > Location > Site 

Class: lis:Site 
   Annotations:  
       rdfs:comment "From BFO: \"b is a site means: b is a three-dimensional immaterial entity 
that is (partially or wholly) bounded by a material entity or it is a three-dimensional immaterial 
part thereof. (axiom label in BFO2 Reference: [034-002])\"", 
       rdfs:comment "This class is inspired by the class \"site\" of the Information Artefact 
Ontology.", 
       rdfs:label "Site", skos:prefLabel "Site" 
   SubClassOf:  
       lis:Location 

 
Description to be completed. 

For examples of Site in context, see use case B.2. 

A.2.3.3.2 Object > Location > SpatialLocation 

Class: lis:SpatialLocation 
   Annotations:  
       rdfs:label "SpatialLocation", skos:prefLabel "SpatialLocation" 
   SubClassOf:  
       lis:Location 

 
Description to be completed. 
 
The class SpatialLocation distinguishes two subclasses, PointInSpace and RegionInSpace. 

A.2.3.3.2.1 Object > Location > SpatialLocation > PointInSpace 

Class: lis:PointInSpace 
   Annotations:  
       rdfs:label "PointInSpace", skos:prefLabel "PointInSpace" 
   SubClassOf:  
       lis:SpatialLocation 

 
Description to be completed. 
 
A.2.3.3.2.2 Object > Location > SpatialLocation > RegionInSpace 

Class: lis:RegionInSpace 
   Annotations:  
       rdfs:label "RegionInSpace", skos:prefLabel "RegionInSpace" 
   SubClassOf:  
       lis:SpatialLocation 

 
Description to be completed. 
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 Object > Organization 

Class: lis:Organization 
   Annotations:  
       rdfs:label "Organization", skos:prefLabel "Organization" 
   SubClassOf:  
       lis:Object 

 
Description to be completed. 
 
For examples of Organization in context, see use case B.8. 

The class Organization is set to be mutually disjoint with the classes InformationObject, Location and 
PhysicalObject.  

 Object > PhysicalObject 

Class: lis:PhysicalObject 
   Annotations:  
       rdfs:label "PhysicalObject", skos:prefLabel "PhysicalObject" 
   SubClassOf:  
       lis:Object 

 
Physical objects are the main citizens in an industrial ontology. Objects in this category are characterized 
with material and geometrical properties. They also have intended functions, which are individual 
entities dependent on their bearers. 
 
The class PhysicalObject is set to be mutually disjoint with the classes InformationObject, Location and 
Organization.  

The class PhysicalObject distinguish four subclasses, Compound, Feature, InanimatePhysicalObject and 
Organism. 

A.2.3.5.1 Object > PhysicalObject > Compound 

Class: lis:Compound 
   Annotations:  
       rdfs:label "Compound", skos:prefLabel "Compound" 
   SubClassOf:  
       lis:PhysicalObject 

 
Description to be completed. 
 
A.2.3.5.2 Object > PhysicalObject > Feature 

Class: lis:Feature 
   Annotations:  
       rdfs:label "Feature", skos:prefLabel "Feature" 
   SubClassOf:  
       lis:PhysicalObject 

 
Description to be completed. 
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A.2.3.5.3 Object > PhysicalObject > InanimatePhysicalObject 

Class: lis:InanimatePhysicalObject 
   Annotations:  
       rdfs:label "InanimatePhysicalObject", skos:prefLabel "InanimatePhysicalObject" 
   SubClassOf:  
       lis:PhysicalObject 

 
Description to be completed. 

The class InanimatePhysicalObject distinguish two subclasses, Phase and Stream. 

A.2.3.5.3.1 Object > PhysicalObject > InanimatePhysicalObject > Phase 

Class: lis:Phase 
   Annotations:  
       rdfs:label "Phase", skos:prefLabel "Phase" 
   SubClassOf:  
       lis:InanimatePhysicalObject 

 
Description to be completed. 
 
A.2.3.5.3.2 Object > PhysicalObject > InanimatePhysicalObject > Stream 

Class: lis:Stream 
   Annotations:  
       rdfs:label "Stream", skos:prefLabel "Stream" 
   SubClassOf:  
       lis:InanimatePhysicalObject 

 
Description to be completed. 

A.2.3.5.4 Object > PhysicalObject > Organism 

Class: lis:Organism 
   Annotations:  
       rdfs:label "Organism", skos:prefLabel "Organism" 
   SubClassOf:  
       lis:PhysicalObject 

 
Description to be completed. 

The class Organism has one subclass, Person. 

A.2.3.5.4.1 Object > PhysicalObject > Organism > Person 

Class: lis:Person 
   Annotations:  
       rdfs:label "Person", skos:prefLabel "Person" 
   SubClassOf:  
       lis:Organism 

 
Description to be completed. 
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 Object properties  

The ISO 15926-14 ontology has 63 object properties. Figure 2 presents an overview over all object 
properties.  
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Figure 2 - Object properties of ISO 15926-14 ontology 

The object properties are listed following their respective super-properties and their inverses. 
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 concretizedBy 

ObjectProperty: lis:concretizedBy 
   Annotations:  
       rdfs:label "concretizedBy", skos:prefLabel "concretizedBy" 
   InverseOf:  
       lis:concretizes 

Description to be completed. 

The object property concretizedBy is set to be the inverse of the object property concretizes.  

 concretizes 

ObjectProperty: lis:concretizes 
   Annotations:  
       rdfs:comment "Inspired by BFO's \"concretizes\". Note that the ISO 15926-14 definition 
diverges slightly from that in BFO, mainly in employing Feature where BFO has \"specifically 
dependent continuant\".", 
       rdfs:comment "TODO. Consider splitting this into two relations, one concretizesInFeature 
and another concretizesInActivity, to avoid a disjunctive domain.", 
       rdfs:label "concretizes", 
       rdfs:seeAlso <http://purl.obolibrary.org/obo/BFO_0000164>, 
       rdfs:seeAlso <http://purl.obolibrary.org/obo/RO_0000059>, 
       skos:prefLabel "concretizes" 
   Domain:  
       lis:Activity or lis:Feature 
   Range:  
       lis:InformationObject 
   InverseOf:  
       lis:concretizedBy 

Description to be completed. 
 
The object property concretizedBy is set to be the inverse of the object property concretizes.  

 connectedTo 

ObjectProperty: lis:connectedTo 
   Annotations:  
       rdfs:label "connectedTo", skos:prefLabel "connectedTo" 
   Characteristics:  
       Symmetric 
   Domain:  
       lis:PhysicalObject 

 
Description to be completed.  
 
The object property connectedTo has one sub-property, directlyConnectedTo. 
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 connectedTo > directlyConnectedTo 

ObjectProperty: lis:directlyConnectedTo 
   Annotations:  
       rdfs:label "directlyConnectedTo", skos:prefLabel "directlyConnectedTo" 
   Characteristics:  
       Symmetric 
   SubPropertyOf:  
       lis:connectedTo 

 
Description to be completed.  
 

 createdBy 

ObjectProperty: lis:createdBy 
   Annotations:  
       rdfs:label "createdBy", skos:prefLabel "createdBy" 
   InverseOf:  
       lis:creates 

 
Description to be completed. 
 
The object property createdBy is set to be the inverse of the object property creates.  

 creates 

ObjectProperty: lis:creates 
   Annotations:  
       rdfs:comment "Use this relation to express that an activity brings a physical object into 
being. (Derived from class_of_cause_of_beginning_of_class_of_individual in Part 2).", 
       rdfs:label "creates", skos:prefLabel "creates" 
   Domain:  
       lis:Activity 
   Range:  
       lis:PhysicalObject 
   InverseOf:  
       lis:createdBy 

 
Description to be completed.  
 
The object property creates is set to be the inverse of the object property createdBy.  

 datumUOM 

ObjectProperty: lis:datumUOM 
   Annotations:  
       rdfs:comment "Relation (functional) to assign unit of measure to measurement data.", 
       rdfs:label "datumUOM", skos:prefLabel "datumUOM" 
   Characteristics:  
       Functional 
   Domain:  
       lis:QuantityDatum 
   Range:  
       lis:UnitOfMeasure 
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Used to assign a unit of measure to a quantity datum. 
 
Description to be completed.  

 dispositionOf 

ObjectProperty: lis:dispositionOf 
   Annotations:  
       rdfs:label "dispositionOf", skos:prefLabel "dispositionOf" 
   InverseOf:  
       lis:hasDisposition 

Description to be completed. 

The object property dispositionOf is set to be the inverse of the object property hasDisposition.  

The object property dispositionOf has one sub-property, functionOf. 

 dispositionOf > functionOf 

ObjectProperty: lis:functionOf 
   Annotations:  
       rdfs:label "functionOf", skos:prefLabel "functionOf" 
   SubPropertyOf:  
       lis:dispositionOf 
   InverseOf:  
       lis:hasFunction 

 
Description to be completed.  
 
The object property functionOf is set to be the inverse of the object property hasFunction.  

 hasDisposition 

ObjectProperty: lis:hasDisposition 
   Annotations:  
       rdfs:comment "Inspired by BFO's \"has disposition\" (RO_0000091).", 
       rdfs:label "hasDisposition", 
       rdfs:seeAlso <http://purl.obolibrary.org/obo/RO_0000091>, 
       skos:prefLabel "hasDisposition" 
   Range:  
       lis:Disposition 
   InverseOf:  
       lis:dispositionOf 

 
Description to be completed.  
 
The object property hasDisposition is set to be the inverse of the object property dispositionOf.  

The object property hasDisposition has one sub-property, hasFunction. 
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 hasDisposition > hasFunction 

ObjectProperty: lis:hasFunction 
   Annotations:  
       rdfs:comment "Inspired by BFO's \"has function\" (RO_0000085).", 
       rdfs:label "hasFunction", 
       rdfs:seeAlso <http://purl.obolibrary.org/obo/RO_0000085>, 
       skos:prefLabel "hasFunction" 
   SubPropertyOf:  
       lis:hasDisposition 
   Range:  
       lis:Function 
   InverseOf:  
       lis:functionOf 

 
The object property hasFunction is used to assign individual functions to physical objects. In class 
constraints, this allows for physical objects to be grouped according to purpose. 
Description to be completed.  

The object property hasFunction is set to be the inverse of the object property functionOf.  

 installedAs 

ObjectProperty: lis:installedAs 
   Annotations:  
       rdfs:label "installedAs", skos:prefLabel "installedAs" 
   Domain:  
       lis:PhysicalObject 
   Range:  
       lis:FunctionalObject 
   InverseOf:  
       lis:hasInstalled 

 
Description to be completed. 
 
The object property installedAs is set to be the inverse of the object property hasInstalled.  

 hasInstalled 

ObjectProperty: lis:hasInstalled 
   Annotations:  
       rdfs:label "hasInstalled", skos:prefLabel "hasInstalled" 
   InverseOf:  
       lis:installedAs 

 
Description to be completed. 
 
The object property hasInstalled is set to be the inverse of the object property installedAs.  
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 interestOf 

ObjectProperty: lis:interestOf 
   Annotations:  
       rdfs:comment "Derived from \"LifecycleStage\" of Part 2, this is a superproperty suitable 
for various intentional relationships, such as planning, approving, or ordering. The Part 2 name 
\"lifecycle stage\" is likely to confuse, but the intended use of this type is clear enough from 
this Part 2 annotation to ClassOfLifecycleStage: \"EXAMPLE Planned, required, expected, and 
proposed can be represented by instances of [class_of_lifecycle_stage].\"", 
       rdfs:label "interestOf", skos:prefLabel "interestOf" 
   InverseOf:  
       lis:hasInterestIn 

 
Description to be completed. 
 
The object property interestOf is set to be the inverse of the object property hasInterestIn.  

The object property interestOf has one sub-property, approvedBy. 

 interestOf > approvedBy 

ObjectProperty: lis:approvedBy 
   Annotations:  
       rdfs:comment "Relation for stating that some item or activity was approved by an entity, 
typically a person or an organisation.", 
       rdfs:label "approvedBy", skos:prefLabel "approvedBy" 
   SubPropertyOf:  
       lis:interestOf 
   InverseOf:  
       lis:approves 

 
Description to be completed. 
 
The object property approvedBy is set to be the inverse of the object property approves.  

 hasInterestIn 

ObjectProperty: lis:hasInterestIn 
   Annotations:  
       rdfs:label "hasInterestIn", skos:prefLabel "hasInterestIn" 
   InverseOf:  
       lis:interestOf 

 
Description to be completed. 
 
The object property hasInterestIn is set to be the inverse of the object property interestOf.  

The object property hasInterestIn has one sub-property, approves. 
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 hasInterestIn > approves 

ObjectProperty: lis:approves 
   Annotations:  
       rdfs:label "approves", skos:prefLabel "approves" 
   SubPropertyOf:  
       lis:hasInterestIn 
   InverseOf:  
       lis:approvedBy 

 
Description to be completed. 
 
The object property approves is set to be the inverse of the object property approvedBy.  

 partOf 

ObjectProperty: lis:partOf 
   Annotations:  
       rdfs:label "partOf", skos:prefLabel "partOf" 
   InverseOf:  
       lis:hasPart 

 
Description to be completed. 
 
The object property partOf is set to be the inverse of the object property hasPart.  

The object property partOf has four sub-properties, activityPartOf, arrangedPartOf, functionalPartOf and 
subLocationOf. 

 partOf > activityPartOf 

ObjectProperty: lis:activityPartOf 
   Annotations:  
       rdfs:label "activityPartOf", skos:prefLabel "activityPartOf" 
   SubPropertyOf:  
       lis:partOf 
   InverseOf:  
       lis:hasActivityPart 

 
Description to be completed. 
 
The object property activityPartOf is set to be the inverse of the object property hasActivityPart.  

The object property activityPartOf has one sub-property, activityBoundOf. 

A.3.13.1.1 partOf > activityPartOf > activityBoundOf 

ObjectProperty: lis:activityBoundOf 
   Annotations:  
       rdfs:label "activityBoundOf", skos:prefLabel "activityBoundOf" 
   SubPropertyOf:  
       lis:activityPartOf 
   InverseOf:  
       lis:hasActivityBound 
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Description to be completed. 
 
The object property activityBoundOf is set to be the inverse of the object property hasActivityBound.  

The object property activityBoundOf has two sub-properties, begins and ends. 

A.3.13.1.1.1 partOf > activityPartOf > activityBoundOf > begins 

ObjectProperty: lis:begins 
   Annotations:  
       rdfs:label "begins", skos:prefLabel "begins" 
   SubPropertyOf:  
       lis:activityBoundOf 
   InverseOf:  
       lis:hasBeginning 

 
Description to be completed. 
 
The object property begins is set to be the inverse of the object property hasBeginning.  

A.3.13.1.1.2 partOf > activityPartOf > activityBoundOf > ends 

ObjectProperty: lis:ends 
   Annotations:  
       rdfs:label "ends", skos:prefLabel "ends" 
   SubPropertyOf:  
       lis:activityBoundOf 
   InverseOf:  
       lis:hasEnding 

 
Description to be completed. 
 
The object property ends is set to be the inverse of the object property hasEnding.  

 partOf > arrangedPartOf 

ObjectProperty: lis:arrangedPartOf 
   Annotations:  
       rdfs:label "arrangedPartOf", skos:prefLabel "arrangedPartOf" 
   SubPropertyOf:  
       lis:partOf 
   InverseOf:  
       lis:hasArrangedPart 

 
Description to be completed. 
 
The object property arrangedPartOf is set to be the inverse of the object property hasArrangedPart.  

The object property arrangedPartOf has two sub-properties, assembledPartOf and featureOf. 
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A.3.13.2.1 partOf > arrangedPartOf > assembledPartOf 

ObjectProperty: lis:assembledPartOf 
   Annotations:  
       rdfs:label "assembledPartOf", skos:prefLabel "assembledPartOf" 
   SubPropertyOf:  
       lis:arrangedPartOf 
   InverseOf:  
       lis:hasAssembledPart 

 
Description to be completed. 
 
The object property assembledPartOf is set to be the inverse of the object property hasAssembledPart.  

A.3.13.2.2 partOf > arrangedPartOf > featureOf 

ObjectProperty: lis:featureOf 
   Annotations:  
       rdfs:label "featureOf", skos:prefLabel "featureOf" 
   SubPropertyOf:  
       lis:arrangedPartOf 
   InverseOf:  
       lis:hasFeature 

 
Description to be completed. 
 
The object property featureOf is set to be the inverse of the object property hasFeature.  

 partOf > functionalPartOf 

ObjectProperty: lis:functionalPartOf 
   Annotations:  
       rdfs:comment "Where x is a functional part of a system y, the realisation of one or more 
functions of x contributes to the performance of y.", 
       rdfs:label "functionalPartOf", 
       rdfs:seeAlso "lis:FunctionalObject", 
       skos:prefLabel "functionalPartOf" 
   SubPropertyOf:  
       lis:partOf 
   Domain:  
       lis:FunctionalObject 
   Range:  
       lis:System 
   InverseOf:  
       lis:hasFunctionalPart 

 
Description to be completed. 
 
The object property functionalPartOf is set to be the inverse of the object property hasFunctionalPart.  
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 partOf > subLocationOf 

ObjectProperty: lis:subLocationOf 
   Annotations:  
       rdfs:label "subLocationOf", skos:prefLabel "subLocationOf" 
   SubPropertyOf:  
       lis:partOf 
   InverseOf:  
       lis:hasSubLocation 

 
Description to be completed. 
 
The object property subLocationOf is set to be the inverse of the object property hasSubLocation.  

 hasPart 

ObjectProperty: lis:hasPart 
   Annotations:  
       rdfs:label "hasPart", skos:prefLabel "hasPart" 
   InverseOf:  
       lis:partOf 

 
This property, and its inverse hasPart, expresses part-whole relationships, as in a physical break-down 
structure of a plant. 
 
Description to be completed. 

The object property hasPart is set to be the inverse of the object property partOf.  

The object property hasPart has four sub-properties, hasActivityPart, hasArrangedPart, 
hasFunctionalPart, and hasSubLocation. 

 hasPart > hasActivityPart 

ObjectProperty: lis:hasActivityPart 
   Annotations:  
       rdfs:label "hasActivityPart", skos:prefLabel "hasActivityPart" 
   SubPropertyOf:  
       lis:hasPart 
   Domain:  
       lis:Activity 
   Range:  
       lis:Activity 
   InverseOf:  
       lis:activityPartOf 

 
Description to be completed. 
 
The object property hasActivityPart is set to be the inverse of the object property activityPartOf.  

The object property hasActivityPart has one sub-property, hasActivityBound. 
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A.3.14.1.1 hasPart > hasActivityPart > hasActivityBound 

ObjectProperty: lis:hasActivityBound 
   Annotations:  
       rdfs:label "hasActivityBound", skos:prefLabel "hasActivityBound" 
   SubPropertyOf:  
       lis:hasActivityPart 
   InverseOf:  
       lis:activityBoundOf 

 
Description to be completed. 
 
The object property hasActivityBound is set to be the inverse of the object property activityBoundOf.  

The object property hasActivityBound has two sub-properties, hasBeginning and hasEnding. 

A.3.14.1.1.1 hasPart > hasActivityPart > hasActivityBound > hasBeginning 

ObjectProperty: lis:hasBeginning 
   Annotations:  
       rdfs:label "hasBeginning", skos:prefLabel "hasBeginning" 
   SubPropertyOf:  
       lis:hasActivityBound 
   InverseOf:  
       lis:begins 

 
Description to be completed. 
 
The object property hasBeginning is set to be the inverse of the object property begins.  

A.3.14.1.1.2 hasPart > hasActivityPart > hasActivityBound > hasEnding 

ObjectProperty: lis:hasEnding 
   Annotations:  
       rdfs:label "hasEnding", skos:prefLabel "hasEnding" 
   SubPropertyOf:  
       lis:hasActivityBound 
   InverseOf:  
       lis:ends 

Description to be completed. 
 
The object property hasEnding is set to be the inverse of the object property ends.  

 hasPart > hasArrangedPart 

ObjectProperty: lis:hasArrangedPart 
   Annotations:  
       rdfs:comment "In line with intended use, for the DL profile this relation has a domain 
restricted to physical objects.", 
       rdfs:label "hasArrangedPart", skos:prefLabel "hasArrangedPart" 
   SubPropertyOf:  
       lis:hasPart 
   Domain:  
       lis:PhysicalObject 
   InverseOf:  
       lis:arrangedPartOf 
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Description to be completed. 
 
The object property hasArrangedPart is set to be the inverse of the object property arrangedPartOf.  

The object property hasArrangedPart has two sub-properties, hasAssembledPart and hasFeature. 

A.3.14.2.1 hasPart > hasArrangedPart > hasAssembledPart 

ObjectProperty: lis:hasAssembledPart 
   Annotations:  
       rdfs:comment "This is the recommended (super-) relation for capturing physical breakdown of 
mechanical assemblies.", 
       rdfs:label "hasAssembledPart", skos:prefLabel "hasAssembledPart" 
   SubPropertyOf:  
       lis:hasArrangedPart 
   InverseOf:  
       lis:assembledPartOf 

 
Description to be completed. 
 
The object property hasAssembledPart is set to be the inverse of the object property assembledPartOf.  

A.3.14.2.2 hasPart > hasArrangedPart > hasFeature 

ObjectProperty: lis:hasFeature 
   Annotations:  
       rdfs:comment "Example of usage: stating that an entity has a surface suitable for 
connection, such as a flange face.", 
       rdfs:label "hasFeature", skos:prefLabel "hasFeature" 
   SubPropertyOf:  
       lis:hasArrangedPart 
   InverseOf:  
       lis:featureOf 

 
Description to be completed. 
 
The object property hasFeature is set to be the inverse of the object property featureOf.  

 hasPart > hasFunctionalPart 

ObjectProperty: lis:hasFunctionalPart 
   Annotations:  
       rdfs:label "hasFunctionalPart", skos:prefLabel "hasFunctionalPart" 
   SubPropertyOf:  
       lis:hasPart 
   InverseOf:  
       lis:functionalPartOf 

 
Description to be completed. 
 
The object property hasFunctionalPart is set to be the inverse of the object property functionalPartOf.  
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 hasPart > hasSubLocation 

ObjectProperty: lis:hasSubLocation 
   Annotations:  
       rdfs:label "hasSubLocation", skos:prefLabel "hasSubLocation" 
   SubPropertyOf:  
       lis:hasPart 
   Domain:  
       lis:Location 
   Range:  
       lis:Location 
   InverseOf:  
       lis:subLocationOf 

 
Description to be completed. 
 
The object property hasSubLocation is set to be the inverse of the object property subLocationOf.  

 participantIn 

ObjectProperty: lis:participantIn 
   Annotations:  
       rdfs:label "participantIn", skos:prefLabel "participantIn" 
   InverseOf:  
       lis:hasParticipant 

 
Used to express participation of an object in an Activity. Use cases should introduce subproperties to 
capture the type of participation – as resource, agent, output, etc. 
 
Description to be completed. 

The object property participantIn is set to be the inverse of the object property hasParticipant.  

 hasParticipant 

ObjectProperty: lis:hasParticipant 
   Annotations:  
        rdfs:comment "This is the recommended superrelation for types of participation by entities 
in activities -- the agent, the matter being acted upon, etc.", 
       rdfs:label "hasParticipant", skos:prefLabel "hasParticipant" 
   Domain:  
       lis:Activity 
   InverseOf:  
       lis:participantIn 

 
Description to be completed. 
 
The object property hasParticipant is set to be the inverse of the object property participantIn.  
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 qualityOf 

ObjectProperty: lis:qualityOf 
   Annotations:  
       rdfs:label "qualityOf", skos:prefLabel "qualityOf" 
   InverseOf:  
       lis:hasQuality 

 
Description to be completed. 
 

The object property qualityOf is set to be the inverse of the object property hasQuality.  

The object property qualityOf has one sub-property, physicalQuantityOf. 

 qualityOf > physicalQuantityOf 

ObjectProperty: lis:physicalQuantityOf 
   Annotations:  
       rdfs:label "physicalQuantityOf", skos:prefLabel "physicalQuantityOf" 
   SubPropertyOf:  
       lis:qualityOf 
   InverseOf:  
       lis:hasPhysicalQuantity 

 
Description to be completed. 
 
The object property physicalQuantityOf is set to be the inverse of the object property hasPhysicalQuantity.  

 hasQuality 

ObjectProperty: lis:hasQuality 
   Annotations:  
       rdfs:label "hasQuality", skos:prefLabel "hasQuality" 
   Range:  
       lis:Quality 
   InverseOf:  
       lis:qualityOf 

 
Used to assign individual qualities to physical objects. In class constraints, this allows for categorization 
of physical objects according to material and geometrical aspects. 
Description to be completed. 

The object property hasQuality is set to be the inverse of the object property qualityOf.  

The object property hasQuality has one sub-property, hasPhysicalQuantity. 
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 hasQuality > hasPhysicalQuantity 

ObjectProperty: lis:hasPhysicalQuantity 
   Annotations:  
       rdfs:label "hasPhysicalQuantity", skos:prefLabel "hasPhysicalQuantity" 
   SubPropertyOf:  
       lis:hasQuality 
   Domain:  
       lis:PhysicalObject 
   Range:  
       lis:PhysicalQuantity 
   InverseOf:  
       lis:physicalQuantityOf 

 
Description to be completed. 
 
The object property hasPhysicalQuantity is set to be the inverse of the object property physicalQuantityOf.  

 roleOf 

ObjectProperty: lis:roleOf 
   Annotations:  
       rdfs:comment "Inspired by BFO's \"role of\" (RO_0000081)", 
       rdfs:label "roleOf", 
       rdfs:seeAlso <http://purl.obolibrary.org/obo/RO_0000081>, 
       skos:prefLabel "roleOf" 
   InverseOf:  
       lis:hasRole 

 
Description to be completed. 
 
The object property roleOf is set to be the inverse of the object property hasRole.  

 hasRole 

ObjectProperty: lis:hasRole 
   Annotations:  
       rdfs:comment "Inspired by BFO's \"has role\" (RO_0000087)", 
       rdfs:label "hasRole", 
       rdfs:seeAlso <http://purl.obolibrary.org/obo/RO_0000087>, 
       skos:prefLabel "hasRole" 
   Range:  
       lis:Role 
   InverseOf:  
       lis:roleOf 

 
Description to be completed. 
 
The object property hasRole is set to be the inverse of the object property roleOf.  
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 installedAs 

ObjectProperty: lis:installedAs 
   Annotations:  
       rdfs:label "installedAs", skos:prefLabel "installedAs" 
   Domain:  
       lis:PhysicalObject 
   Range:  
       lis:FunctionalObject 
   InverseOf:  
       lis:hasInstalled 

 
Description to be completed. 
 
The object property installedAs is set to be the inverse of the object property hasInstalled.  

 hasInstalled 

ObjectProperty: lis:hasInstalled 
   Annotations:  
       rdfs:label "hasInstalled", skos:prefLabel "hasInstalled" 
   InverseOf:  
       lis:installedAs 

 
Description to be completed. 
 
The object property hasInstalled is set to be the inverse of the object property installedAs.  

 isAbout 

ObjectProperty: lis:isAbout 
   Annotations:  
       rdfs:label "isAbout", 
       rdfs:seeAlso <http://purl.obolibrary.org/obo/IAO_0000136>, 
       skos:prefLabel "isAbout" 
   InverseOf:  
       lis:representedIn 

 
Description to be completed. 
 
The object property isAbout is set to be the inverse of the object property representedIn.  

The object property isAbout has two sub-properties, quantifiesQuality and represents. 

 isAbout > quantifiesQuality 

ObjectProperty: lis:quantifiesQuality 
   Annotations:  
       rdfs:label "quantifiesQuality", skos:prefLabel "quantifiesQuality" 
   SubPropertyOf:  
       lis:isAbout 
   InverseOf:  
       lis:qualityQuantifiedAs 

 
Description to be completed. 
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The object property quantifiesQuality is set to be the inverse of the object property qualityQuantifiedAs.  

 isAbout > represents 

ObjectProperty: lis:represents 
   Annotations:  
       rdfs:label "represents", skos:prefLabel "represents" 
   SubPropertyOf:  
       lis:isAbout 
   InverseOf:  
       lis:representedBy 

 
Description to be completed. 
 
The object property represents is set to be the inverse of the object property representedBy.  

 representedIn 

ObjectProperty: lis:representedIn 
   Annotations:  
       rdfs:comment "Also see \"is about\" IAO_0000136 of the Information Artifact Ontology, which 
may be better named for a maximally general relation of \"aboutness\" (but note that \"is about\" 
goes in the opposite direction of \"representedIn\").", 
       rdfs:label "representedIn", 
       rdfs:seeAlso <http://purl.obolibrary.org/obo/IAO_0000136>, 
       skos:prefLabel "representedIn" 
   Range: 
       lis:InformationObject 
   InverseOf:  
       lis:isAbout 

 
Description to be completed. 
 
The object property representedIn is set to be the inverse of the object property isAbout.  

The object property representedIn has two sub-properties, qualityQuantifiedAs and representedBy. 

 representedIn > qualityQuantifiedAs 

ObjectProperty: lis:qualityQuantifiedAs 
   Annotations:  
       rdfs:comment "This relation is inspired by the relation \"is quality measured as\" of the 
Information Artefact Ontology. The term \"quantified\" replaces \"measured\" to support cases 
where measurement is not involved, as in e.g. estimates.", 
       rdfs:label "qualityQuantifiedAs", skos:prefLabel "qualityQuantifiedAs" 
   SubPropertyOf:  
       lis:representedIn 
   Domain:  
       lis:Quality 
   Range:  
       lis:QuantityDatum 
   InverseOf:  
       lis:quantifiesQuality 
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Used to relate physical aspects of individuals to the information objects that measure (or estimate, etc.), 
them. 
 
Description to be completed. 

 representedIn > representedBy 

ObjectProperty: lis:representedBy 
   Annotations:  
       rdfs:comment "In Part 2, this is the top level relation from things to information objects. 
For this Part, we introduce representedIn, as the more generic inverse of isAbout.", 
       rdfs:label "representedBy", skos:prefLabel "representedBy" 
   SubPropertyOf:  
       lis:representedIn 
   Range:  
       lis:InformationObject 
   InverseOf:  
       lis:represents 

 
Description to be completed. 
 
The object property representedBy is set to be the inverse of the object property represents.  

 locatedRelativeTo 

ObjectProperty: lis:locatedRelativeTo 
   Annotations:  
       rdfs:label "locatedRelativeTo", skos:prefLabel "locatedRelativeTo" 
   Characteristics:  
       Symmetric 
 

Description to be completed. 
 
The object property locatedRelativeTo has four sub-properties, containedBy, contains, hasResident and 
residesIn. 

 locatedRelativeTo > containedBy 

ObjectProperty: lis:containedBy 
   Annotations:  
       rdfs:label "containedBy", skos:prefLabel "containedBy" 
   SubPropertyOf:  
       lis:locatedRelativeTo 
   InverseOf:  
       lis:contains 

 
Description to be completed. 
 
The object property containedBy is set to be the inverse of the object property contains.  
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 locatedRelativeTo > contains 

ObjectProperty: lis:contains 
   Annotations:  
       rdfs:comment "For the DL profile, we restrict this relation to physical objects. Note that 
this rules out using \"lis:contains\" for spatial locations.", 
       rdfs:label "contains", skos:prefLabel "contains" 
   SubPropertyOf:  
       lis:locatedRelativeTo 
   Domain:  
       lis:PhysicalObject 
   Range:  
       lis:PhysicalObject 
   InverseOf:  
       lis:containedBy 

 
Description to be completed. 
 
The object property contains is set to be the inverse of the object property containedBy.  

 locatedRelativeTo > residesIn 

ObjectProperty: lis:residesIn 
   Annotations:  
       rdfs:comment "x residesIn y if x is a physical object that is located in the location y.", 
       rdfs:label "residesIn", skos:prefLabel "residesIn" 
   SubPropertyOf:  
       lis:locatedRelativeTo 
   Domain:  
       lis:PhysicalObject 
   Range:  
       lis:Location 
   InverseOf:  
       lis:hasResident 

 
Description to be completed. 
 
The object property residesIn is set to be the inverse of the object property hasResident.  

 locatedRelativeTo > hasResident 

ObjectProperty: lis:hasResident 
   Annotations:  
       rdfs:label "hasResident", skos:prefLabel "hasResident" 
   SubPropertyOf:  
       lis:locatedRelativeTo 
   InverseOf:  
       lis:residesIn 

 
Description to be completed. 
 
The object property hasResident is set to be the inverse of the object property residesIn.  
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 occursRelativeTo 

ObjectProperty: lis:occursRelativeTo 
   Annotations:  
       rdfs:comment "This relation is introduced for the DL profile as a top relation for various 
temporal relations between activities.", 
       rdfs:label "occursRelativeTo", skos:prefLabel "occursRelativeTo" 
   Characteristics:  
       Symmetric 
   Domain:  
       lis:Activity 
   Range:  
       lis:Activity 

 
Description to be completed. 
 
The object property occursRelativeTo has two sub-properties, before and after. 

 occursRelativeTo > after 

ObjectProperty: lis:after 
   Annotations:  
       rdfs:comment "Use this relation to state that one activity after before another.", 
       rdfs:label "after", skos:prefLabel "after" 
   SubPropertyOf:  
       lis:occursRelativeTo 
   InverseOf:  
       lis:before 

 
Description to be completed. 
 
The object property after is set to be the inverse of the object property before.  

 occursRelativeTo > before 

ObjectProperty: lis:before 
   Annotations:  
       rdfs:comment "Use this relation to state that one activity occurs before another.", 
       rdfs:label "before", skos:prefLabel "before" 
   SubPropertyOf:  
       lis:occursRelativeTo 
   InverseOf:  
       lis:after 

 
Description to be completed. 
 
The object property before is set to be the inverse of the object property after.  

The object property before has one sub-property, causes. 
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A.3.26.2.1 occursRelativeTo > before > causes 

ObjectProperty: lis:causes 
   Annotations:  
       rdfs:label "causes", skos:prefLabel "causes" 
   SubPropertyOf:  
       lis:before 

 
Description to be completed. 
 

 realizedIn 

ObjectProperty: lis:realizedIn 
   Annotations:  
       rdfs:comment "Inspired by BFO's \"realized in\" (BFO_0000054)", 
       rdfs:label "realizedIn", 
       rdfs:seeAlso <http://purl.obolibrary.org/obo/BFO_0000054>, 
       skos:prefLabel "realizedIn" 
   Domain:  
       lis:RealizableEntity 
   Range:  
       lis:Activity 
   InverseOf:  
       lis:realizes 

 
Used to state that a function is realized in an activity. In class constraints, this allows for 
characterization of intended performance of physical objects. 
 
Description to be completed. 

The object property realizedIn is set to be the inverse of the object property realizes.  

 realizes 

ObjectProperty: lis:realizes 
   Annotations:  
       rdfs:label "realizes", 
       rdfs:seeAlso <http://purl.obolibrary.org/obo/BFO_0000055>, 
       skos:prefLabel "realizes" 
   InverseOf:  
       lis:realizedIn 

 
Description to be completed. 
 
The object property realizes is set to be the inverse of the object property realizedIn.  

 Data properties  

The ISO 15926-14 ontology has three data properties. Figure 3 presents an overview of the data 
properties. 
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Figure 3 - Data properties of ISO 15926-14 

 

 approvedOn 

DataProperty: lis:approvedOn 
   Annotations:  
       rdfs:comment "This is a super-property for stating the time that an entity was approved, 
derived from Part 2 \"approval\". Introduce sub-properties to match different contexts and types 
of approval. The range of sub-properties should be xsd:date or xsd:dateTime.", 
       rdfs:label "approvedOn", skos:prefLabel "approvedOn" 

 
This is a super-property for stating the time that an entity was approved. 
 
Description to be completed. 

 datumValue 

DataProperty: lis:datumValue 
   Annotations:  
       rdfs:comment "This relation is inspired by the relation \"has measurement value\" of the 
Information Artefact Ontology.", 
       rdfs:label "datumValue", skos:prefLabel "datumValue" 

 
This property is used to assign, generally numerical, data typed values to measurements (estimates, etc.). 
 
Description to be completed. 

 qualityQuantityValue 

DataProperty: lis:qualityQuantityValue 
   Annotations:  
       rdfs:comment "This is a super-property for \"shortcut\" relations that combine a quality, 
the weak lis:qualityQuantifiedAs, and a unit of measure into a simple data property. For instance, 
\"mass in kilograms\" can be introduced as such a data property, for expressing the mass of an 
entity on the kilogram scale. lis:qualityQuantifiedAs is weak in the sense that it doesn't 
distinguish between designed or estimated, and measured, values.", 
       rdfs:label "qualityQuantityValue", skos:prefLabel "qualityQuantityValue" 

 
This is a super-property for “shortcut” relations that combine a quality and a unit of measure into a 
simple data property. Such shortcuts are highly recommended for large ontologies, where complexity of 
the model needs to be kept low to allow for tractable reasoning. For instance, “mass in kilograms” can 
be introduced as such a data property. 
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Description to be completed. 

 Annotation properties 

The ISO 15926-14 ontology has two sets of annotation properties.  

- The originatesFrom annotation property, and subproperties, is for recording changes to resources 
between versions of an ontology, 

- The relatedEntity annotation property is for providing light-weight pointers to semantically 
similar entities in external vocabularies, in particular ontologies. 
 

Figure 4 presents an overview of the annotation properties. 

 

 

Figure 4 - Annotation properties of ISO 15926-14 

 originatesFrom 

AnnotationProperty: lis:originatesFrom 
   Annotations:  
       rdfs:comment "This is a super-property for associating a resource with a resource it 
originated from.", 
       rdfs:label "originatesFrom", skos:prefLabel "originatesFrom" 

This is a super-property for associating a resource with a resource it originated from. 

The annotation property originatesFrom has three sub-properties, transformedFrom, mergedFrom and 
splitFrom.  

 originatesFrom > transformedFrom 

AnnotationProperty: lis:transformedFrom 
   Annotations:  
       rdfs:comment "This annotation property is used for stating that the current resource 
originates from another resource by transformation.", 
       rdfs:label "transformedFrom", skos:prefLabel "transformedFrom" 
   SubPropertyOf:  
       lis:originatesFrom 
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This annotation property is used for stating that the current resource originates from another resource 
that has been transformed. 

Description to be completed. 

For an example of transformedFrom in context, see use case F.6. 

 originatesFrom > mergedFrom 

AnnotationProperty: lis:mergedFrom 
   Annotations:  
       rdfs:comment "This annotation property is used for stating that the current resource 
originates from one or several other resources by merging.", 
       rdfs:label "mergedFrom", skos:prefLabel "mergedFrom" 
   SubPropertyOf:  
       lis:originatesFrom 

This annotation property is used for stating that the current resource originates from one or several other 
resources that have been merged. 

Description to be completed. 

For an example of mergedFrom in context, see use case F.6. 

 

 originatesFrom > splitFrom 

AnnotationProperty: lis:splitFrom 
   Annotations:  
       rdfs:comment "This annotation property is used for stating that the current resource 
originates from another resource by splitting.", 
       rdfs:label "splitFrom", skos:prefLabel "splitFrom" 
   SubPropertyOf:  
       lis:originatesFrom 

This annotation property is used for stating that the current resource originates from another resource 
that has been split. 

Description to be completed. 

For an example of splitFrom in context, see use case F.6. 

 relatedEntity 
AnnotationProperty: lis:relatedEntity 
    Annotations:  
        rdfs:comment "Annotation property for referring from OWL ontology resources to entities in 
external vocabularies (typically, but not necessarily, ontologies), where definitions, examples, 
or explications of the external entity contribute to understanding and defining the local 
resource.", 
        rdfs:label "relatedEntity" 
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 relatedEntity > relatedEntityISO15926 

AnnotationProperty: lis:relatedEntityISO15926 
    Annotations:  
        rdfs:comment "Annotation property for referring from OWL ontology resources in ISO 15926-
14 to entities in other parts of ISO 15926, where definitions, examples, or explications of the 
Part 2 entity contribute to understanding and defining the Part 14 resource.", 
        rdfs:label "relatedEntityISO15926", 
        skos:example "The Part 14 class Activity is clearly related to, but not equivalent to, the 
Part 2 entity ClassOfActivity, and this annotation property should be used to record that fact." 
    SubPropertyOf:  
        lis:relatedEntity 

 relatedEntity > remodelsEntity 

AnnotationProperty: lis:remodelsEntity 
    Annotations:  
        rdfs:comment "Annotation property for referring from OWL ontology resources to entities in 
external vocabularies, where the local resource, together with OWL constructs, can express 
intuitively the same facts as the referenced entity.", 
        rdfs:label "remodelsEntity" 
    SubPropertyOf:  
        lis:relatedEntity 

A.5.2.2.1 relatedEntity > remodelsEntity > remodelsEntityISO15926 

AnnotationProperty: lis:remodelsEntityISO15926 
    Annotations:  
        rdfs:comment "Annotation property for referring from OWL ontology resources in ISO 15926-
14 to entities in other parts of ISO 15926 (primarily Part 2), where the Part 14 entity type, 
together with OWL constructs, can express intuitively the same facts as the referenced entity.", 
        rdfs:label "remodelsEntityISO15926", 
        skos:example "Range restrictions on physical quantities can be captured with OWL and Part 
14 using \"facet\" datatype restrictions. These will correspond to Part 2 Property Range 
expressions." 
    SubPropertyOf:  
        lis:relatedEntityISO15926, 
        lis:remodelsEntity 

 relatedEntity > equivalentEntity 

AnnotationProperty: lis:equivalentEntity 
    Annotations:  
        rdfs:comment "Annotation property for referring from OWL ontology resources to entities in 
external vocabularies, where the local resource is equivalent in meaning to that of the referenced 
entity.", 
        rdfs:label "equivalentEntity" 
    SubPropertyOf:  
        lis:relatedEntity 
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A.5.2.3.1 relatedEntity > equivalentEntity > equivalentEntityISO15926 

AnnotationProperty: lis:equivalentEntityISO15926 
    Annotations:  
        rdfs:comment "Annotation property for referring from ontology resources in ISO 15926-14 to 
entities in other parts of ISO 15926, where the Part 14 resource is equivalent in meaning to that 
of the referenced entity.", 
        rdfs:label "equivalentEntityISO15926", 
        skos:example "The Part 14 class Activity has, intuitively, the same meaning as the Part 2 
entity Activity, and this annotation property should be used to record that fact." 
    SubPropertyOf:  
        lis:equivalentEntity, 
        lis:relatedEntityISO15926 

 relatedEntity > deprecatedEntity 

AnnotationProperty: lis:deprecatedEntity 
    Annotations:  
        rdfs:comment "Annotation property for referring from OWL ontology resources to 
semantically similar entities in external vocabularies, where the limitations of OWL, as as first-
order language, imply that representing the intended meaning of the referenced entity is not 
feasible.", 
        rdfs:label "deprecatedEntity" 
    SubPropertyOf:  
        lis:relatedEntity 

A.5.2.4.1 relatedEntity > deprecatedEntity > deprecatedEntityISO15926 

AnnotationProperty: lis:deprecatedEntityISO15926 
    Annotations:  
        rdfs:comment "Annotation property for referring from ontology resources in ISO 15926-14 to 
semantically similar entities in other parts of ISO 15926 (primarily Part 2), where the 
limitations of OWL, as as first-order language, imply that Part 14 is not capable of expressing 
the intended meaning of the referenced entity.", 
        rdfs:label "deprecatedEntityISO15926", 
        skos:example "Modal notions can not be captured in OWL. Therefore, Part 2 entities that 
are essentially modal, such as those referring to \"actuality\" or \"materialization\", need to be 
left out of Part 14." 
    SubPropertyOf:  
        lis:deprecatedEntity, 
        lis:relatedEntityISO15926 
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Annex B 
(informative) 

 
Mapping of entity types from ISO 15926-14 to ISO 15926-2 

An electronic insert to ISO 15926-14 documents the relationship between entity types in ISO 15926-2 
and ontology resources in ISO 15926-14: the MS Excel spreadsheet 

  N-2782_mapping between ISO 15926-14 and ISO 15926-2.xlsx. 

The spreadsheet includes 4 worksheets. Both the EXPRESS schema and the accompanying documentation 
of ISO 15926-2 have been considered in creating the re-representation in ISO 15926-14.  

Worksheet “Remodelled in OWL” includes two tables. The first lists ISO 15926-2 entity types for which 
natural translations into OWL resources have been found: there are 36 of these. The second gives a 
tentative indication of how, for a selection of ISO 15926-2 entity types that resist direct translation, 
patterns of OWL resources to may be employed to obtain models with closely equivalent interpretations. 

Worksheet “Metamodelling using SKOS” lists ISO 15926-2 “class of class” entity types for which 
corresponding classes may be introduced, extending the ISO 15926-14 ontology, using the 
OWL punning mechanism for representing classes, object properties, and data properties as individuals. 

Worksheet “Represent in RDL” lists ISO 15926-2 entity types that are deemed inappropriate for inclusion 
in the upper ontology of ISO 15926-14.  

Worksheet “Out of scope” includes four tables. The first lists ISO 15926-2 entity types for which standard 
OWL devices provide native replacements. The second lists entity types for mathematical concepts, which 
are better included in ISO 15926-3. The third lists entity types that are replaced by OWL primitives for 
identifiers, natural languages, and data types. The fourth lists entity types that are modal in nature, and 
therefore not suitable for inclusion in a the first-order language of OWL DL.  
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Annex C 
(informative) 

 
Reference to electronic version of ontology 

The version of the ontology that is defined by this document is attached: 

LIS-14.ttl  

The ontology is provided as an OWL/RDF file in Turtle4 format. 

Editor’s Note: Extend this section with information on any format details, as well as description logic 
complexity of the ontology. 

 
4 https://www.w3.org/TR/turtle/ 



Working Draft (WD) Proposal for ISO 15926-14:2020(E) 

 45 

Annex D 
(informative) 

 
Naming conventions 

The following conventions are aimed to help users with the naming of terms. 

To be completed. 

 Data property shortcuts 

Data property shortcuts serve the purpose … 

Example: Hammer, data property mass_kilogram or mass_measured_kilogram 

Pattern: (closest) type for the quality + ‘_’ + unit of measure 

Refer to use case on units of measure. 

To be completed. 

 Inverse relations 

To be completed. 
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Annex E 
(informative) 

 
Reasoning 

 Automated classification from property values  

This example illustrates how one can use OWL 2 reasoning to classify objects (a.k.a. individuals in the 
OWL terminology) by means of formalized definitions of classes. Assume, for the sake of the example, 
that a hammer considered to be “big” if its weight in kg is more than 1 and that it is otherwise “small”. 
Assume two objects, referred to as “hbig” and “hsmall” with measured weights of, respectively, 4.7 and 
0.3 kg. We want to use reasoning to infer that hbig is big and hsmall is small. Furthermore, the 
representation should distinguish these measurements from other information about the hammers’ 
weight like different measurements and information in data sheets. 

Intuitively, a hammer has a mass and it may have different data associated to its mass, e.g. measured in 
different points of time or with different units (kilograms, stones). Figure 2 summarizes some main points 
of the example, which is explained in detail in the rest of the section5.  

 

Figure 5- Hammer mass representation 

 

 
5 This figure has been revised and extended in Section G.9 to discuss additional details of individuals of type ScalarQuantityDatum 
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 Information objects 

In order to make the appropriate inferences in OWL the weight information must be represented as 
properties of an object. ISO 15926-14 takes this object to be an InformationObject. More precisely 
InformationObject is a superclass of QuantityDatum, and QuantityDatum a superclass of 
ScalarQuantityDatum. The latter two classes are inspired by the Information Artefact Ontology and its 
classes “measurement datum” and “scalar measurement datum”; the change of wording from 
“measurement” to “quantity” is intended to support cases where measurement is not involved, such as 
with nominal values in data sheets. Here are the formal definitions:  

Class: QuantityDatum 
 SubClassOf: InformationObject 
Class: ScalarQuantityDatum  
 SubClassOf: QuantityDatum,  
  datumValue some rdfs:Literal and datumUOM some UnitOfMeasure 

A scalar quantity datum has a unique unit of measure and a unique numeric value. The datumUOM is an 
object property used to carry information about the unit of measure: 
ObjectProperty: datumUOM  
 Domain: QuantityDatum  
 Range: UnitOfMeasure  
 Characteristics: Functional  

Note that UnitOfMeasure is itself a subclass of InformationObject.  

Going back to the example, the object that carries the information “4.7 kg” carries information about the 
hammer’s mass. To capture this point, we introduce a subclass of ScalarQuantityDatum called 
MassQuantityDatum: 

 
Class: MassQuantityDatum  
 SubClassOf: ScalarQuantityDatum, 
  datumValue some float and datumUOM some Scale and datumTime some xsd:date 

 

The object property datumTime not predefined in P14, but we can freely add it on demand. 

The value of datumValue has the XSD datatype float. Similarly, date is also an XSD datatype. Wherever 
available, XSD datatypes should be used in ontologies based on ISO 15926-14. The object property 
datumTime is not predefined in ISO 15926-14 and can be added on demand with a datatype that has the 
appropriate granularity for the case at hand. For instance, xsd:date is a calendar date while xsd:dateTime 
includes hour, minute, second.  

The object property datumUOM links to a Scale, one of whose instances is “kilogram”. Note that “kilogram” 
is an object (or: OWL individual). When comparing the types of the object property restrictions of 
MassQuantityDatum to the corresponding restrictions of ScalarQuantityDatum we see that the values of 
the former are more restricted than the values of latter: float is more restrictive than rdfs:Literal and 
Scale is more restrictive than UnitOfMeasure. By narrowing down the space of admissible values in this 
way, more errors in the data can potentially be detected by a reasoner.  

The information objects of the example are thus represented as follows: 
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Individual: hbig_mass_datum 
 Types: MassQuantityDatum 
 Facts: datumUOM kilogram, datumValue 4.7f 
Individual: hsmall_mass_datum 
 Types: MassQuantityDatum 
 Facts: datumUOM kilogram, datumValue .3f 

 

 Qualities 

The datum individuals record measurements of the hammers’ mass. The intention of ISO 15926-14 is to 
take Mass as a subclass of PhysicalQuantity. The class Quality and its subclass PhysicalQuantity in are 
directly inspired by corresponding classes included in the DOLCE and BFO upper ontologies.   

A Hammer, its relation to mass, and the relation between the mass and QuantityDatum in evidence could 
be formally represented as follows:  

Class: Hammer 
 SubClassOf: hasMass some Mass 
Class: Mass 
 SubClassOf: qualityQuantifiedAs some MassQuantityDatum 

 
In a real example, one would expect to inherit the restriction with the hasMass property from a superclass 
of Hammer instead of being defined for Hammer; this will work since such restrictions propagate 
downwards through the subclass hierarchy. Note that there can be several distinct instances of 
MassQuantityDatum related to a given instance of Mass. The hammer and mass individuals in Figure 2 are 
represented in this way: 

Individual: hbig 
 Types: Hammer 
 Facts: hasMass hbig_mass 
Individual: hbig_mass 
 Types: Mass 
 Facts: qualityMeasuredAs hbig_mass_datum 
Individual: hsmall 
 Types: Hammer 
 Facts: hasMass hsmall_mass 
Individual: hsmall_mass 
 Types: Mass 
 Facts: qualityMeasuredAs hsmall_mass_datum 

 
Note that the qualityQuantifiedAs property is recorded by means of the subproperty qualityMeasuredAs. 
This way one can capture the distinction between measurements and nominal values of data sheets.  

 Necessary and sufficient conditions 

By stipulation a big hammer is a hammer that weights more than 1 kilogram, while small hammers must 
weight 1 kilogram or less. This could be formally represented as follows:  
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Class: BigHammer 
 SubClassOf: hasMass some (qualityQuantifiedAs  
  some (datumUOM value kilogram and datumValue some float[> 1]))  
Class: SmallHammer 
 SubClassOf: hasMass some (qualityQuantifiedAs  
  some (datumUOM value kilogram and datumValue some float[<= 1]))  

 
The above two OWL 2 axioms represent necessary but not sufficient conditions for establishing class 
membership of an individual. For example, the individuals hbig and hsmall, as declared above, will not be 
classified as BigHammer, respectively SmallHammer, as one would expect.  

In order to enable the desired inference, sufficient conditions are also required. This could easily be 
achieved by declaring BigHammer as EquivalentTo the restriction instead of SubClassOf. An alternative 
would be to add a reversed SubClassOf axioms (i.e. the other side of the equivalence).  

Class: hasMass some (qualityQuantifiedAs 
  some (datumUOM value kilogram and datumValue some float[> 1]))  
  SubClassOf: BigHammer 
Class: hasMass some (qualityQuantifiedAs 
  some (datumUOM value kilogram and datumValue I float[<= 1]))  
 SubClassOf: SmallHammer 

Apart from enabling additional inferences, sufficient conditions have typically a representation closer to 
rules which will enhance OWL 2 reasoning. Necessary conditions may also be considered as restrictions 
over the data (i.e. integrity constraints) which could also be represented as rules. Interested readers can 
refer to the following references [4, 15].  

 Adding shortcuts 

Simplifying a representation can sometimes speed up reasoning considerably. The data property 
has_mass_in_kilogram shortcuts the model in Figure 2. 

For large scale ontologies efficiency and scalability of reasoning will sometimes require simplifications 
in the ontology, typically by leaving out classes and properties that will slow down the reasoning engine. 
ISO 15926-14 includes some useful shortcuts that allows semantically significant information to be 
represented at a higher level of granularity, should this be needed.  

 Functions  

Most of the physical things that we wish to describe in a store of industrial data will have a function – an 
intended purpose. This includes structural elements of a factory, equipment, and instruments.  

A description of function could look as follows: “A Hammer’s function is realized precisely when it is used 
as a tool to drive a nail”. The shape of the sentence can guide us to a modelling example for an ontology-
based representation: “A Hammer x has a function that is realized in nail-driving activities where x has 
the tool role”.  

Figure 3 shows a graphical representation of the modelling example. Note that NailDriving is a subclass 
of Activity where a hammer h has a function f which is realized in the nail-driving activity d. Ensuring that 
hammer functions are only realized in nail driving processes where the hammer is active as a tool is 
clearly important (i.e. the link between h and d).  

We can include appropriate constraints on the individuals by means of a constraint on hbig_f: 



 

50  

Individual: hbig_f 
 Facts:  memberOf (realizedIn only (nailing and inverse(toolIn) value hbig)) 

But there is no way to express this constraint at the level of class Hammer to the effect that any member 
of that class meets the constraint, due to the back-reference implicit in the appearance of hbig.  

If one wishes to characterize systems beyond the part/whole breakdown (cf the example in Section 8) 
this has to be done via functions and their realizations. This allows for the interdependencies between 
the functional parts of the systems to be modelled and be reasoned about. 

 

Figure 6 – Hammer function example 

 Example: Checking conformance with requirements  

This example illustrates how reasoning can assist in checking conformance of product types with 
restrictions from design, and how product individuals can be related to functional objects through object 
properties.  

 System, Functional objects and Physical objects 

The starting point is a system s, with functional parts a and b represented by the object property 
functionalPartOf. Both the system s and its functional parts a and b are classified as FunctionalObject. A 
functional object could be a tag, or an object identified in the design process at a point before tags are 
introduced.  

Furthermore, the functional objects a and b are also classified as PhysicalObject; a is classified as instance 
of Driver and b as an instance of PowerSource; these are both quite high-level characterizations. For a, we 
assert that it has output power of at least 850 W. This is illustrated in Figure 4 below: 
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Figure 7 – System, functional objects and classifications as physical objects 

An important point is that the breakdown structure of the physical objects may be very different from 
the system breakdown structure captured by the object property functionalPartOf. The physical 
breakdown structure is not illustrated, but could be captured by part/whole properties, e.g.,  
arrangedPartOf.  

 Developing a design 

Working from the functional description of the system, the designers develop a detailed type 
description, exploiting the available reference data library (RDL). It turns out their RDL contains the 
class ElectricMotor. What they need is a class that, among other things, carries the power restriction. 
Besides this the class could restrict with respect to a number of other factors like size, vibration and 
noise, but these are, for the sake of example, neglected in the following. 

The designer search in the RDL for a class called “DriverABC850” without any hit. But before they add 
the class that they want to the RDL they provide its formal definition to the reasoner to check if the RDL 
contains a class with an equivalent definition. The check was positive, the RDL contains a class called 
DriverABC which is defined exactly as they wanted, although with an unexpected. Note that this check 
prevented them from creating a duplicate class in the RDL. The design can now be accurately captured 
by the class El.MotorABC850, which happened to extend the RDL and was hence added.  

Figure 5 illustrates the new modeling of the design. 
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Figure 8 – Design classes for the motor 

Note that the functional individual a will be constrained according to all superclasses of El. Motor 
ABC850; in particular, the output power restriction is now inherited by that class.  

 Design and replaceable parts: Adding product individuals 

The RDL contains a product model which contains two product types as illustrated in Figure 6.  

  

 

Figure 9 – Product types 

Before handing over to procurement the engineers want to test the effect of using these product types 
and introduce three product individuals, see Figure 7. The product individuals are related to the 
functional object a via the installedAs property. In the present model no information is captured about 
the nature of the installation and, e.g., at what time the product is installed at the functional (tag) position. 
Such information can, though, easily be added. 
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Figure 10 – Installing product individuals at the position of the functional object 

 

 Detecting the inconsistency 

Using automated reasoning we can check whether the requirements laid down in a design are satisfied 
by the installed parts. In complex cases, we benefit from the reasoner’s ability to find not only obvious 
clashes, but also any implicit conflicts that may be very difficult to identify without the help of automated 
reasoning. There are different solutions to check conformance requirements.  

First, we can check emptiness or disjointness between the component specification class and the classes 
describing the concrete specifications of a model. For example, the intersection between ElMotorABC850 
and ElMotorACME_A is non empty since the ACME A model satisfies the requirements (delivers 900 watts) 
while the intersection between ElMotorABC850 and ElMotorACME_B is empty since ACME B model does 
not meet the requirements (delivers only 800 watts).  

Second, we can use individual substitution as illustrated in Figure 8. This can be done by selecting 
“concrete” individuals of a model and substituting them by the targeted design objects. For the example 
given, we substitute the replaceable parts a1, a2 and a3 for the design object a. The effect of substitution 
is that we combine all the requirements of the design with all the characteristics of the product 
specimens. Substitution can be simulated by adding statements of the type:  

Individual: a  
 SameAs: a2 

 
As there is a conflict, the reasoner will discover an inconsistency. The difference with respect to the 
previous solution is that the concrete individuals of a model may bring additional characteristics to meet 
the design requirements.  
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Figure 11 – Inconsistency detected by reasoning 

 

Alternatively, instead of finding conflicts between the requirements and the concrete products, one could 
try to classify the concrete product individuals and model specifications under the component 
requirement specification. To this end, as in the example in Section 6, sufficient conditions are required. 
Adding the following sufficient condition to our example would classify ElMotorACME_A under 
ElMotorABC850 and thus the replaceable parts a1 and a3 will also be members of ElMotorABC850.  

Class: ElMotor and power_watts some float[>= 850]  
 SubClassOf: ElMotorABC850  
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Annex F 
(informative) 

 
Lifecycle information 

 Lifecycle scenario of an object  

This section illustrates the approach for modelling lifecycle information. The approach captures the 
lifecycle model as suggested in ISO 81346-1. Three different aspects of lifecycle information are being 
accounted for: evolving specifications, instantiations and resources. 

Consider the lifecycle scenario of an object in Annex B.2 of ISO 81346-1. The scenario describes a concrete 
lifecycle story taking, without loss of generality, the occurrence of pump motor in an industrial process 
as an example. The story begins with the creation of a functional object that fulfills the need for pumping.  
The object is then associated with Function Requirements (FR) specifying such details as rated power, 
etc. Next, the location for the object is specified as well as the Component Type (CT) and a Product 
Specification (PS) is given.  Once the specifications are in place, an actual motor, i.e. a physical object, is 
installed and, later, replaced by another motor as part of a maintenance policy.  

This lifecycle story is illustrated in Figure 12 below (which is a modification of Figure B.2 in ISO 81346-
1). The figure only shows Situation N of the story. The aspect cube (top) stands for a stable reference to 
the functional object. The coloured sides of the cube represent the different aspects related to function, 
location and product specification as distinguished in ISO 81346-1. Representing these aspects using the 
ISO 15926-14 ontology is illustrated in G.6. 

Editor’s note: The following are candidates for being promoted from the present, informative, annex to 
be included in the ISO 15926-14 ontology itself, because they are essential for life-cycle information. 

• Object property specifiedIn, 
• Class Specification, from which subclasses would be introduced to cover a use case; here, the use 

case is ISO/IEC 81346, motivating classes Function Requirement, etc. 
• Annotation property partOfSpecification, from which subproperties would be introduced to cover 

the variants of specification in scope for a use case. 
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Figure 12 - Situation N of the object’s life cycle in ISO 81346-1  

 

The accounts for representing the three aspects of lifecycle information using the ISO 15926-14 ontology 
are described in the following. 

 Evolving specifications 

The aspect cube is represented in Figure 13 by the individual driver1, which is classified as 
FunctionalObject in the ISO 15926-14 ontology. Note that driver1 is a stable IRI, i.e., it does not change 
over time. 

The function requirement FR1, the component specification CT1 and the product specification PS1 are 
represented by the individuals FR1, CT1 and PS1, respectively. The association between the cube and the 
function requirement, shown as an arrow from the cube to FR1 (yellow circle) in Figure 12, is modelled 
using the object property specifiedIn. Similarly, the associations between the cube and the component 
and product specifications, shown as arrows from the cube to CT1 (yellow circle) and PS1 (blue circle), 
are modelled using specifiedIn as well. 

Suppose the requirement FR1 states that the consumption of the motor should be at most 5.0 kW. The 
restriction on the power consumption is modelled using the shortcut data property consumption_kW 
from driver1 to the value 5.0 of type xsd:float. The data property in turn is annotated using the annotation 
property partOfFuncSpec with FR1; see Figure 13. A convention for naming shortcut data properties is 
presented in D.1. 
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Figure 13 - Associating specifications to a design object 

Suppose further that component specification CT1 states that a component with number CN456 is to be 
used for the motor. This is modelled by asserting that driver1 is of the class “Component 456”, whose 
members have the component number “CN456” as an attribute. This association is annotated with CT1 
using the annotation property partOfCompSpec.  

Finally, suppose that the product specification PS1 states that the concrete product with number AN789 
is to be used for the motor. This is modelled by asserting that driver1 is of the class “Product 789”, whose 
members have the product number “AN789” as an attribute. This association is annotated with PS1 using 
the annotation property partOfProdSpec.  

 Evolving instantiation 

Once the specifications have been made, the functional object is to be instantiated by a physical object; 
see Figure 14. This is shown by an arrow from the cube to the motor M2 (blue rectangle) in Figure 12. 
This is modelled using the object property installedAs (blue arrow) that connects driver1 with the 
individuals M1 and M2. For more details on how to use the installedAs property to detect inconsistencies 
between specifications and implementation, see E.11.  

Suppose that M2 is already the second motor that replaces the first motor, M1 in Figure 12, as part of a 
maintenance policy. This is modelled by connecting M2 with the individual M1, which represents motor 
M1, via an annotation property, previous (black arrow). The annotation property is application specific 
and, therefore, it is not specified in the ISO 15926-14 ontology. This is illustrated in Figure 14. 

 

Figure 14 - Evolution of instantiations 
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 Embedded specifications and instantiations 

Figure 15 shows the current state of the specifications and instantiations embedded into the same model. 
The connections to the ISO 15926-14 upper ontology are emphasised. In particular, the classes 
FunctionalObject, InformationObject, PhysicalObject and Site (classes with white background) and the 
object properties residesIn and installedAs (blue arrows) from the ISO 15926-14 ontology have been 
employed. The individual representing the cube, driver1, is classified as a FunctionalObject, the 
individuals representing the specifications FR1, CT1 and PS1 are each classified as InformationObject, and 
the individuals representing the motors M1 and M2 are each classified as PhysicalObject. Additionally, 
there an individual, H-7B, representing the location, where the driver is to be installed. This individual is 
classified as Site. 

 

Figure 15 - Specifications and instantiations embedded into one model 
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 Evolving resources  

Industrial processes affect changes to resources by which they are transformed, merged or split apart. 

Transforming a resource leads to changes of its properties. The changes may be so significant that the 
identifier used to refer to the resource before the change may no longer be used to refer to the resource 
after the change. Instead a new identifier is introduced. For instance, consider the manufacturing process 
of injection moulding plastic pellets into plastic cups. The process transforms pellets into cups by heating 
up the pellets and injecting the molten plastic into a cup-shaped mould under high pressure. The material 
the pellets and the cups are made of is the same, but it appears in a different form. The identifier used to 
refer to the pellets is no longer used to refer to the moulded cups.  

The process of merging resources combines the resources in a specific way. The result is a new resource 
that receives its own identifier. While merging physical resources will usually consume the original 
resources, merging digital resources can leave the original resources intact. Therefore, consuming and 
non-consuming merge processes are distinguished. For instance, consider the process of dissolving a gas 
into a liquid, e.g., the process of carbonating water. Carbon dioxide gas is dissolved in water to produce 
carbonated (sparkling) water. The resulting carbonated water receives a new identifier and the 
identifiers for referring to the gas and the water are no longer used.  

The process of splitting a resource leads to several new resources which consist of parts of the original 
resource. The resulting resources receive new identifiers. The splitting of a physical resource is a 
destructive process. On the other hand, the splitting of digital resources is not necessarily destructive. 
For instance, consider the manufacturing process of dividing raw material, e.g., the process of punching 
out work pieces from sheet metal. In such a process, a metal sheet is being divided into work pieces and 
scrap, all of which may receive their own identifiers. The reference to the metal sheet no longer points to 
an existing resource.  

 Modelling 

The model focusses on the evolution of identifiers. The notion of change over time is modelled as a 
revision history of ontology snapshots instead of being modelled within an ontology. Each ontology 
snapshot represents a timeless state of the model. Links between snapshots are established using 
dedicated OWL annotation properties. ISO 15926-14 provides three OWL annotation properties for the 
change operations transform, merge and split, which are called transformedFrom, mergedFrom and 
splitFrom, respectively. The resources resulting from a change operation are annotated, pointing back to 
the resources they originated from. The ontology snapshot describing the state of the model after the 
change operation receives annotations that point back to its preceding snapshot. 

 Transform 

A diagram is to be added here.  
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We introduce a vocabulary of machinery, materials, and processes for describing the states of affairs. This 
vocabulary is the same both before and after transformation. 

Prefix: : <http://example.org/>  
 
Class: lis:Activity         
Class: lis:Site 
Class: Polystyrene 
Class: InjectionMouldingMachine_A 
Class: Cup_A_Batch 
 
ObjectProperty: lis:residesIn 
ObjectProperty: hasInput 
ObjectProperty: hasOutput 
ObjectProperty: hasTool 
 
DataProperty: grainSize_mm         
DataProperty: mass_kg 
DataProperty: piece_count 
         
AnnotationProperty: lis:transformedFrom  
 
Individual: injection_moulding_machine_1 
    Types: InjectionMouldingMachine_A 
Individual: silo_1 
    Types: lis:Site 
Individual: shelf_1 
    Types: lis:Site            

In the before scenario, a moulding process takes a batch of plastic pellets, the individual 
plastic_granulate_1, as input material. 

Individual: plastic_granulate_1 
    Types: PolystyrenePelletBatch, grainSize_mm only xsd:integer[>=4, <8],  
      mass_kg value 10 
    Facts: lis:residesIn silo_1 
         
Individual: moulding_process_1 
    Types: lis:Activity 
    Facts: hasTool injection_moulding_machine_1, hasInput plastic_granulate_1 

In the after scenario, the batch of plastic pellets is no longer an individual in the ontology: it has been 
transformed into a batch of plastic cups. The transformedFrom annotation on the batch of plastic cups 
records its origin in the batch of pellets. 

Individual: plastic_cups_1 
    Annotations: lis:transformedFrom <http://example.org/plastic_granulate_1> 
    Types: Polystyrene, Cup_A_Batch 
    Facts: piece_count 550 
         
Individual: moulding_process_1 
    Types: lis:Activity 
    Facts: hasTool injection_moulding_machine_1, hasOutput plastic_cups_1 

 Merge 

A diagram is to be added here.  
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We introduce a vocabulary of machinery, compounds, and processes for describing the states of affairs. 
This vocabulary is the same both before and after transformation. 

Class: lis:Activity         
Class: lis:Site 
Class: CO2 
Class: H2O 
Class: CarbonatedWater 
Class: CarbonatingMachine_A 
 
ObjectProperty: lis:residesIn 
ObjectProperty: hasInput 
ObjectProperty: hasOutput 
ObjectProperty: hasTool 
 
DataProperty: mass_kg 
DataProperty: volume_l 
         
AnnotationProperty: mergedFrom 
 
Individual: carbonator_1 
    Types: CarbonatingMachine_A 
Individual: pressure_gas_tank_1 
    Types: lis:Site    
Individual: liquid_tank_1 
    Types: lis:Site    

In the before scenario, a volume of gas, carbon_dioxide_1, is injected into a volume of water, water_1. 

Individual: water_1 
    Types: H2O 
    Facts: lis:residesIn liquid_tank_1, volume_l 1000 
Individual: carbon_dioxide_1 
    Types: CO2  
    Facts: lis:residesIn pressure_gas_tank_1, mass_kg 3 
 
Individual: carbonation_process_1 
    Types: lis:Activity 
    Facts: hasTool carbonator_1, hasInput water_1, hasInput carbon_dioxide_1 

In the after scenario, the volumes of gas and water are no longer individuals in the ontology: they have 
been merged into a volume of carbonated water. The mergedFrom annotation on the merged volume 
records its origin in the volumes of gas and water. 

Individual: carbonated_water_1 
    Annotations: lis:mergedFrom <http://example.org/water_1>,  
      lis:mergedFrom <http://example.org/carbon_dioxide_1> 
    Types: CarbonatedWater 
    Facts: lis:residesIn liquid_tank_1, volume_l 1000 
 
Individual: carbonation_process_1 
    Types: lis:Activity 
    Facts: hasTool carbonator_1, hasOutput carbonated_water_1 

 Split 

A diagram is to be added here.  
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We introduce a vocabulary of machinery, materials, and processes for describing the states of affairs. This 
vocabulary is the same both before and after transformation. 

Class: lis:Activity         
Class: SteelPlate 
Class: WorkPiece 
Class: SheetMetalPress 
 
ObjectProperty: lis:residesIn 
ObjectProperty: hasInput 
ObjectProperty: hasOutput 
ObjectProperty: hasTool 
 
DataProperty: thickness_mm 
         
AnnotationProperty: lis:splitFrom 
 
Individual: press_1 
    Types: SheetMetalPress 

In the before scenario, work pieces are punched from a sheet of steel. 

Individual: steel_sheet_1 
    Types: SteelPlate 
    Facts: thickness_mm 4 
 
Individual: blanking_process_1 
    Types: lis:Activity 
    Facts: hasTool press_1, hasInput steel_sheet_1 

In the after scenario, the sheet of steel is no longer an individual in the ontology. Three blanks have been 
produced. 

Individual: work_piece_1 
    Types: WorkPiece 
    Annotations: lis:splitFrom <http://example.org/steel_sheet_1> 
Individual: work_piece_2 
    Types: WorkPiece 
    Annotations: lis:splitFrom <http://example.org/steel_sheet_1> 
Individual: work_piece_3 
    Types: WorkPiece 
    Annotations: lis:splitFrom <http://example.org/steel_sheet_1> 
 
Individual: blanking_process_1 
    Types: lis:Activity 
    Facts: hasTool press_1, hasOutput work_piece_1, hasOutput work_piece_2, 
        hasOutput work_piece_3   
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Annex G 
(informative) 

 
Use cases 

    

 Events and alarms 

This use case discusses how to represent machine events and alarms. This is relevant in particular for the 
representation and integration of data produced by sensors, which represent a major source of data 
available on the web today.  

 Status 

Note from the Editors: This use case requires further development. In particular: 

• Improve analysis of WoT TD, SOSA/SSN and iot.schema.org 
• Refine current examples and add new examples to cover the notion of Event 
• Support the analysis with examples using real data   
• Provide an OWL ontology that represents the content of the modelling diagram 
• Provide OTTR templates, and accompanying tables of example data 

 Relevant references  

Relevant sources of information considered during the preparation of this use case are the ontologies 
SOSA/SSN6, WoT Thing Description7 and iot.schema.org8. The first two are W3C recommendations and 
Figures G.1.1 and G.1.2 have been extracted from these recommendations and  therefore, they are 
protected under a license agreement9. 

W3C Web of Things activities aim to improve data interoperability for the Internet of Things (IoT).  But  
in  order  to  achieve this goal, it requires common semantic vocabularies. WoT Thing Description (WoT 
TD) [20] is a W3C recommendation that provides an Information Model with relevant terms and data 
structures for IoT. In particular WoT TD focuses on things and their interaction affordances. A thing is an 
abstraction of a physical or a virtual entity whose metadata and interfaces are described using WoT TD. 
These metadata and interfaces, known as interaction affordances, define how to interact with a thing. 
WoT TD defines three types of interaction affordances: Properties, Actions and Events. The format of the 
data used in WoT TD is described using a data schema vocabulary, which is based on JSON Schema10. 
Figure G.1.1 provides an overview of the core classes and properties of the WoT TD Information Model. 

W3C Semantic Sensor Network Ontology [21] is a recommendation that aims to provide a coherent 
representation of entities, relations, and activities involved in sensing, sampling, and actuation. It 
specifies two ontologies: Semantic Sensor Network (SSN) and Sensor, Observation, Sample, and Actuator 
(SOSA) ontologies, where SOSA provides a lightweight core and SSN is an extension with a broader scope. 
In SOSA, the activities of observing, sampling, and actuating, each targets some feature of interest by 
either changing its state or revealing its properties, each follows some procedure, and each is carried out 
by some object or agent (namely a sensor, an actuator or a sampler, respectively). Figure G.1.2 provides 

 
6 https://www.w3.org/TR/vocab-ssn/  
7 https://www.w3.org/TR/wot-thing-description/  
8 http://iotschema.org/  
9 https://www.w3.org/Consortium/Legal/2015/doc-license 
10 https://tools.ietf.org/html/draft-handrews-json-schema-validation-01  

https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/TR/wot-thing-description/
http://iotschema.org/
https://tools.ietf.org/html/draft-handrews-json-schema-validation-01
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an overview of the core classes and properties that are specifically related to modeling observations in 
SOSA/SSN. SOSA axioms are shown in green, while SSN-only axioms are shown in blue.  

 

Figure G.1.1: WoT core vocabulary (Copyright © 2020 W3C ® (MIT, ERCIM, Keio), All Rights 
Reserved)11 

 

 
11 https://www.w3.org/TR/wot-thing-description/#overview  

https://www.w3.org/TR/wot-thing-description/#overview
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Figure G.1.2: Main classes and properties related to Observation (Copyright © 2017 W3C ® 
(MIT, ERCIM, Keio), All Rights Reserved)12 

 

iot.schema.org extends schema.org to provide specific semantic vocabularies for WoT applications. The 
model of iot.schema.org is defined around the notion of thing’s capabilities such as measuring pressure 
or turning on and off a device. Capabilities are related to interaction patterns, which describe an 
affordance to a capability. Interactions can be of type Property, Event or Action. Similar to WoT TD, 
iot.schema.org includes data schemas based on J-SON Schema to describe the data that interactions 
exchange. Things are represented by the notion of Feature of Interest and being related to a physical 
location of being part of a system or equipment. Figure G.1.3 shows the main classes and properties of the 
iot.schema.org specification. 

 

Figure G.1.3: Main classes and properties defined by iot.schema.org [22] 
 

 Examples 

Notes from the Editors: 

 
12 https://www.w3.org/TR/vocab-ssn/#Observations-overview  

https://www.w3.org/TR/vocab-ssn/#Observations-overview
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• hd12_room123, representing an object of type HeatDetector installed in room123, has function 
hd12_room123_hag_f but it is not of type FunctionalObject because it is not part of a system 

• The class Alarm is defined as a subclass of Activity and not a subclass of Event because an event 
has zero-time extension, following ISO 15926-2.  

 Example of a simple heat detector and alarm 

Figure G.1.4 illustrates a modelling example of a heat alarm, hd12_room123_alarm19, of type Alarm 
generated by the heat detector hd12_room123, which is of type InanimatePhysicalObject. hd12_room123 
is installed (residesIn) in room room123. The heat detector hd12_room123 has a function 
hd12_room123_hag_f of type HeatAlarmGeneration. The alarm hd12_room123_alarm19 mimics the notion 
of observation in SOSA/SSN and it has a timestamp and a quantity datum (hd12_room123_alarm19_qd1) 
indicating the temperature that was recorded in a particular time. The class TemperatureTooHigh is a a 
subclass of Temperature and it represents a physical quantity, such as the related temperature 
measurements are larger than 60 degrees Celsius.  

 

Figure G.1.4: Example of modelling a heat detector that produces heat alarms 
 

 Example of a heat detector and alarm suitable for more complex scenarios 

For more complex scenarios with multiple alarms, devices, processes and types of events, it might be 
recommended to produce simpler models. This can be done by creating hierarchies of specialized data 
properties or defining magic codes, i.e. predefined values with specific meaning. The next two figures 
illustrate these modelling approaches. 
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Figure G.1.5: Example of modelling alarms using data properties 

 

Figure G.1.6: Example of modelling alarms using magic codes 
 

 Physical-spatial 

Models of building structures include building topology (decomposition of buildings into storeys, storeys 
into spaces/rooms, rooms into segments). Some of the objects are physical in their nature (building, 
room), while some are purely spatial (segment). Some spaces are purely spatial objects, while others may 
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correspond to the actual rooms in the buildings. Various devices can be located in different parts of a 
building.  In particular:  

• The physical representation of a building structure with the elements which are part of the 
building topology (such as floors and rooms)  

• The spatial location of a building structure, and the spatial location of a buildings’ floors and 
rooms  

• The location of a specific object (device) which is in a building  
• The relationship between the physical and the spatial representation of the elements which 

constate the building topology 
 

 Status 

Notes from the Editors: This use case requires further development. 

• Make detailed references to BIM and IFC vocabulary sources 
• Provide an OWL ontology that represents the content of the modelling diagram 
• Provide OTTR templates, and accompanying tables of example data 

 

 Source data schemas and systems 

Revit, Building Information Model (BIM)13 and IFC14. 

 

 Modelling Example 

The following modelling assumptions have been made: 

• A physical building, floor, and a room is represented as an instance of the class PhysicalObject. 
Building has floors as parts, and floors have rooms as parts. 

• The location of a building is represented as an instance of the class Site, which is a subclass of 
Location. Additionally, the spatial representations of a buildings’ floors and rooms are also 
represented as instances of the class Site (e.g., RoomSite, BuildingSite).  

• When we want to specify the location of a specific device, we refer to the spatial representation 
of the location (e.g., RoomSite, BuildingSite).  Building site has floor sites as sublocations, and floor 
sites have room sites as sublocations. Room sites have segments as sublocations. 

• The relation between the physical representation of a building, a floor or a room and their 
corresponding location is represented with the object property residesIn. 

• The object property hasLocation with domain PhysicalObject and range Location is used as an 
abbreviation for residesIn followed by subLocationOf; i.e.,  

residesIn   ⃘ subLocationOf ⊑ hasLocation 

E.g. we may state that a thermostat has a location room_site, which is short for saying that 
thermostat’s site (in which it resides) is a sublocation of room_site. 

 

 
13https://ec.europa.eu/jrc/en/publication/building-information-modelling-bim-standardization 

14https://www.buildingsmart.org/standards/bsi-standards/industry-foundation-classes/ 
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Figure G.2.1: Modelling example of a building structure 

 

 Piping and Instrumentation Diagram (P&ID)  

A Piping and Instrumentation Drawing (P&ID) is a key design artefact for building process controls on a 
facility.  The primary purpose of a P&ID is to present the topology of the plant from a process control 
perspective.  Therefore, it includes the following objects and the exposes the links between them in a 2D 
diagram: 

1) Equipment (showing the identifiers of the individual equipment/instrumentation items as well as an 
icon to show the class it belongs to). 

2) Lines (including process flow lines, as well as instrumentation/control lines showing how the 
instrumentation forms an instrument/control loop) 

3) Mereological composition links (e.g. if a motor is part of a compressor) 

4) Topological connection links (e.g. if a line is connected to the compressor inlet) 

5) Containment information (e.g. the flow stream within a process line) 

6) Spatial information (e.g. how a particular vent is above the knockout drum or below) 
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For the purpose of this use case, we will only take into account only items 1 to 4 from the P&ID 
information types, however, the general methodology explained here can be extended to cover the 
remaining information as well. 

 Status 

Notes from the Editors: This use case requires further development. 

• A terse account of the use of OTTR shall be provided in a separate section, serving all use cases 
for which templates are provided. As it stands, the present use case can not be understood 
without reference to the OTTR documentation. 

• Provide an OWL ontology, as a digital attachment, that represents the content of the modelling 
diagram 

• Extend the P&ID content with streams, and containment relationships to process lines 

 Source data 

Source data was secured from https://15926.org/topics/mapping-pid/index.htm. The input dataset was 
stored in a set of tables, capturing 

1) Types: This contains the list of equipment types (e.g. Compressors, Process lines, 
instrumentation equipment), 

2) Individuals with Types: this contains the list of individual P&ID objects (Equipment and Lines) 
along with the type instance link to the class, 

3) Relationships: this includes mereological and topological links between the Individuals. 

The source data was stored in comma-separated format, with the following schema. 

1) Classes are stored in the file types.csv, with subtype—supertype pairs: 

TYPES                     SUPER_TYPES 

COMPRESSOR SYSTEM         SYSTEM 
CENTRIFUGAL COMPRESSOR    COMPRESSOR 

2) Individuals are stored in the file types-instances.csv, containing instance—type pairs: 

INSTANCES     TYPES 

B14-KS-101    COMPRESSOR SYSTEM 
B14-K-101     CENTRIFUGAL COMPRESSOR 

3) Mereological relations are stored in wholes-parts.csv, containing whole—part pairs: 

WHOLES         PARTS 

B14-RW17801    B14-RW17801-S1 
B14-RW17801    B14-RW17801-S2 

4) Topological relations are stored in connections.csv, containing side_1,side_2 and connection type 
triples as indicated below: 

SIDE_1S           SIDE_2S       CONNECTION_TYPES 

B14-K-101         B14-KM-101    DRIVE-TO-DRIVEN CONNECTION 
B14-E-101         B14-EM-101    DRIVE-TO-DRIVEN CONNECTION 
B14-RW17801-S1    B14-V-101     FLANGED CONNECTION WITH SPECTACLE BLIND 

 

https://15926.org/topics/mapping-pid/index.htm
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 Modelling 

 ISO 15926-14 Context 

The following mapping can be used to relate P&ID contents to the core ISO 15926-14 concepts: 

• Equipment classes are subclasses of Equipment, a subclass of InanimatePhysicalObject. 

• Equipment/Instrument Items: individuals are modelled as instances of FunctionalObject, as the 
Tags represent designed equipment, where the manufactured equipment (PhysicalObject) will be 
installed at the FunctionalObject.  

• Topological relationships are modelled using connectedTo for remote connections and 
directlyConnectedTo for proximal connections.  

• Mereological relationships: parthood relations between the equipment (e.g. between a 
compressor and compressor motor) can be modelled with partOf.  

 Example 

The following model diagram explains how a compressor (K-101) is directlyConnectedTo a line (B14-
RZ1780) and connectedTo a vessel (V-101). 

The ontology that results from translating the tables of data, via OTTR templates, will be provided as a 
digital attachment to this document. The following is an excerpt: 

Individual: pnid:B14_K_101 
    Types:  
        pnid:CENTRIFUGAL_COMPRESSOR 
    Facts:   
     lis:connectedTo  pnid:B14_KM_101 
 
Individual: pnid:B14_RZ17801 
    Types:  
        pnid:PIPING_SYSTEM 
     
Individual: pnid:B14_RZ17801_S1 
    Types:  
        pnid:PIPING_NETWORK_SEGMENT 
    Facts:   
     lis:arrangedPartOf  pnid:B14_RZ17801, 
     lis:connectedTo  pnid:B14_FE_101, 
     lis:connectedTo  pnid:B14_RZ17801_S3, 
     lis:connectedTo  pnid:B14_V_101 
     
Individual: pnid:B14_RZ17801_S2 
    Types:  
        pnid:PIPING_NETWORK_SEGMENT 
    Facts:   
     lis:arrangedPartOf  pnid:B14_RZ17801, 
     lis:connectedTo  pnid:B14_FE_101, 
     lis:connectedTo  pnid:B14_K_101 
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Figure B3.1: Example of modelling a compressor (K-101) 

 OTTR Templates 

Further to the model patterns above, we describe OTTR templates that can be used to ingest the P&ID 
data into an ontology.   

 Prefixes 

The following prefixes extend the list provided in section A.1.1. 

OTTR template library prefixes: 

@prefix :     <http://ns.ottr.xyz/0.4/> . 
@prefix ax:  <http://tpl.ottr.xyz/owl/axiom/0.1/>. 
@prefix dec:  <http://tpl.ottr.xyz/owl/declaration/0.1/>. 
@prefix o-rdf: <http://tpl.ottr.xyz/rdf/0.1/>. 
@prefix ont: <http://tpl.ottr.xyz/p/asset-maintenance/owl/ontology/0.1/> . 

Prefixes for templates introduced in this use case: 

@prefix ex-temp: <http://example.org/template/>. 

@prefix pnid: <http://example.org/pnid/>. 
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 Interface Templates 

The following templates are in the stOTTR format. They provide a vocabulary to closely match the data of 
this particular use case. Each template will use one or more generic templates, assumed to be provided 
by a shared library of templates. 

ex-temp:EquipmentTypesInterface [owl:Class ?sub, owl:Class ?super] :: { 
    ex-temp:SubEquipmentType(?sub, ?super) 
}. 

ex-temp:EquipmentInstanceInterface [owl:NamedIndividual ?namedindividual, owl:Class ?class] :: { 
    ex-temp:EquipmentInstance(?namedindividual, ?class) 
}. 

ex-temp:MereologyInterface [lis:PhysicalObject ?whole , lis:PhysicalObject ?part] :: { 
    ex-temp:ArrangedWholePart(?whole, ?part) 
}. 

ex-temp:TopologyInterface [lis:PhysicalObject ?side1, lis:PhysicalObject ?side2] :: { 
    ex-temp:Connection(?side1, ?side2) 
}. 

 Modelling Templates 

The following templates are in the stOTTR format. Their definitions use generic templates provided in the 
generic OTTR library. 

ex-temp:SubEquipmentType[owl:Class ?subequipment, owl:Class ?super] :: { 
    ax:SubClassOf(?subequipment, ?super) 
}. 

ex-temp:EquipmentInstance[owl:NamedIndividual ?namedindividual, owl:Class ?class] :: { 
    o-rdf:Type(?namedindividual, ?class) 
}. 
 
ex-temp:ArrangedWholePart[lis:PhysicalObject ?whole, lis:PhysicalObject ?part] :: { 
    :Triple(?whole, lis:arrangedPartOf, ?part) 
}. 

ex-temp:Connection[lis:PhysicalObject ?side1, lis:PhysicalObject ?side2] :: { 
    :Triple(?side1, lis:connectedTo, ?side2) 
}. 

 Mapping tables into templates 

The above data is ingested from data files, via templates and into ontology, according to the following 
mappings, provided in bOTTR format.  The embedded SQL queries are in the H2 database dialect, reading 
from comma-separated tables. 

[] a :InstanceMap ; :source [ a :H2Source ] ; :template ex-temp:EquipmentTypesInterface ; 
  :query """ 
SELECT CONCAT('pnid:',REGEXP_REPLACE(TYPES,'\\W', '_')), 
CONCAT('pnid:',REGEXP_REPLACE(SUPER_TYPES,'\\W', '_')) 
 FROM CSVREAD('./data/types.csv'); 
"""; 
  :argumentMaps( [ :type :IRI ] [ :type :IRI ]) . 
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[] a :InstanceMap ; :source [ a :H2Source ] ; :template ex-temp:EquipmentInstanceInterface ; 
  :query """ 
SELECT CONCAT('pnid:',REGEXP_REPLACE(instances,'\\W', '_')), 
CONCAT('pnid:',REGEXP_REPLACE(types,'\\W', '_')) 
 FROM CSVREAD('./data/types-instances.csv'); 
"""; 
  :argumentMaps( [ :type :IRI ] [ :type :IRI ]) . 

 

[] a :InstanceMap ; :source [ a :H2Source ] ; :template ex-temp:MereologyInterface ; 
  :query """ 
SELECT CONCAT('pnid:',REGEXP_REPLACE(parts,'\\W', '_')), 
CONCAT('pnid:',REGEXP_REPLACE(wholes,'\\W', '_')) 
 FROM CSVREAD('./data/wholes-parts.csv'); 
"""; 
  :argumentMaps( [ :type :IRI ] [ :type :IRI ]) . 

 

[] a :InstanceMap ; :source [ a :H2Source ] ; :template ex-temp:TopologyInterface ; 
  :query """ 
SELECT CONCAT('pnid:',REGEXP_REPLACE(side_1s,'\\W', '_')), 
CONCAT('pnid:',REGEXP_REPLACE(side_2s,'\\W', '_')) 
 FROM CSVREAD('./data/connections.csv'); 
"""; 
   :argumentMaps( [ :type :IRI ] [ :type :IRI ]) . 

Finally, the OTTR library template Ontology is used to declare the resulting ontology with a SQL query 
that returns static values. 

:OntologyImports a :InstanceMap ; :source [a :H2Source ] ; :template ont:Ontology ; 
  :query """ 
SELECT 'pnid:ontology', '(pnid:base, http://standards.iso.org/iso/15926/part14)'; 
"""; 
 :argumentMaps( [ :type :IRI ] [ :type (rdf:List :IRI) ]) . 

 Software 

The goal of this use case is to represent software artefacts and their relationship to the hardware 
component in which the software is installed. We would like to model the following: 

• A software program and its constituents, such as subroutines, statements, etc. 
• Deployment and storage of a software program on hardware. 
• Different configurations of a software program. 
• Program runs.  

 Status 

Notes from the Editors: 

• The details of the type of entity that concretizes a software artefact needs review (object feature, 
versus a quality of the object) 

• Details of the modelling using FunctionalObject needs review 
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 Source data schemas and systems 

Siemens Totally Integrated Automation Portal (TIA Portal)15 

 

 Modelling 

 ISO 15926-14 Context 

• Software (SW) artefacts are primarily represented as information objects.  This is in line with 
definitions from the BFO-compliant Information Artifact Ontology (IAO): 

o An algorithm is a plan specification which describes the inputs and output of 
mathematical functions as well as workflow of execution for achieving a predefined 
objective. Algorithms are realized usually by means of implementation as computer 
programs for execution by automata. 

o A software artefact is a plan specification composed of a series of instructions that can be 
interpreted by or directly executed by a processing unit. 

• Concrete installations of SW artefacts are represented as physical/functional objects and they are 
linked to the software artefacts (which are information objects) by means of the relation 
concretizes16.    

• Any SW core ontology needs to introduce a relation installedOn to directly link information-level 
SW artefacts to HW locations of their concretizations; this can be seen as a shortcut for the path 
concretizedBy o partOf; this implies that the installation-relation is not pure partonomy, as it has 
an implicit concretization-link in it for bridging between information and physical/functional 
objects. 

• For information-level partonomies, any SW core ontology can specialize hasPart, here e.g. into 
consistsOf, a specialization of hasPart with InformationObject as domain and range. 

• Concretizations of SW artefacts (installed SW artefacts) can be mereologically linked by means of 
more specific hasPart relations for physical/functional objects among each other. 

• Hardware assets that host installations of SW artefacts are considered both 
InanimatePhysicalObject, for their physical character, and FunctionalObject, for their role in a 
system. 

• Variables used in the software program are represented as instances of the class Aspect.  More 
precisely, they are instances of a to-be-introduced Information Quality Entity (see Information 
Artifact Ontology), with different values of a variable (as in, over time, at configuration time, etc.) 
represented as QuantityDatum instances. 

• A program run is an instance of the class Activity. An installed SW program is linked to its run via 
relationship participatesIn. 

 Example 

Automation Software Configuration: Consider an automation engineering environment that allows 
you to program PLC code and to configure your automation setup, for example in terms of device 
configuration and network communication. The Siemens TIA Portal is a prominent example of such an 
environment. To give the automation engineer advice and assistance, the current automation solution is 
to be instantiated in a semantic model so that domain knowledge rules can be applied to it for providing 
validation and recommendation services to the user. Advice could be given as, 'you connected an input 
channel of a device to another input instead of an output', or 'you should include a self-testing 
functionality in the initialization of your code because the type of device used requires it'. The semantic 
model is populated from parts of the automation software code and configuration (e.g., PLC configuration 

 
15 https://new.siemens.com/global/en/products/automation/industry-software/automation-software/tia-portal.html 
16 The pattern of “concretization” can be applied to information objects other than software artefacts. The relation concretizes 
has been included into ISO15926 Part14, following the pattern provided by the IAO. 

https://new.siemens.com/global/en/products/automation/industry-software/automation-software/tia-portal.html
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values) but possibly also from other additional sources that instantiate, e.g., the target plant layout with 
information about the physical devices controlled by the automation software. 

Examples illustrating design decisions from the previous section are shown in Figure G.4.1 (software 
configuration example with a focus on the installedOn relationship), Figure G.4.2 (installed software asset 
as a physical concretization of a software artefact), and Figure G.4.3 (program run). 

In Figure G.4.1, a partonomy of software artefacts (PLC Configuration -> PLC Program -> Procedure) is  
modeled by means of consistsOf relationship between the respective instances. The software artefacts are 
information objects. On the other hand, a PLC is a HardwareAsset (an InanimatePhysicalObject) and it is 
an assembled part (and also a functional part) of a station, which also also a HardwareAsset. By means of 
installedOn relationship, the PLC Program (software) is related to the PLC (hardware) it is installed on. 

In Figure G.4.2, instances of installed software assets (installed PLC Program, Functional Block) are 
shown. The installed PLC Program is a part (both physical and functional) of the PLC hardware and it 
concertizes the PLC Program that is installed. 

In Figure G.4.3, an installed PLC program (an InanimatePhysicalObject) is shown to be a participant in the 
program run (an Activity). 

 
Figure G.4.1: Software configuration example 
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Figure G4.2: Installed Software Asset Example. It illustrates the concretizes relationship between a PLC 
program and its installation on a hardware. 

 

Figure G.4.3: Program run example: An installed PLC program (a PhysicalObject) is a participant in the 
program run (an Activity) 
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 Product catalog 

Product catalogues contain descriptions of hardware and software products, their classification, variants, 
components and properties. They may also include servicing offers, but this is of of scope of this use case. 
More specifically, the following needs to be considered when modelling product properties: 

• Some properties are physical quantities, to be measured in specified units (e.g. Voltage is always 
measured in kV). They may have numeric ranges. 

• Some properties have value ranges other than numeric (e.g. Boolean or enumerations). 

Another important feature to be described is connection points (ports). For example, a network device 
may have ports that allows it to be wired with other devices within a system. 

Product knowledge includes constraints (rules) on admissible product configurations, leading to valid 
product variants. These usually include dependencies between the component properties. 

Product knowledge also includes information on product versions as well as their compatibility and 
successor relationships that is relevant for product maintenance.   

Finally, it is important to relate maintained (installed) products to (abstract) products from the catalogue 
as well as to their spare parts list. 

 Status 

Notes from the Editors: 

• Add a discussion of how a piece of equipment may be validated against a prototype. 
• Provide detailed, worked-out ontology examples 

 

 Source data schemas and systems 

There are several standards for product classifications and descriptions, including eCl@ss17 and ETIM.18 
Many companies use their own proprietary schemas (e.g., extensions of eCl@ss) and systems to capture 
product knowledge. 

 Modelling 

 ISO 15926-14 Context 

While in terms of OWL, catalogue products and their classification are most naturally described via OWL 
classes, the detailed level of description required for particular products and their relationships to other 
products cannot be captured via OWL axioms. For example, a detailed Bills of Material (BoM) of a product 
that specifies that two sub-components of a product are physically connected to each other requires a 
non-tree-shaped model that cannot be enforced in OWL without resorting to individuals. For this reason, 
the possibility for representation on both class and individual level is necessary. 

When it comes to the representation of products on the individual level, these are considered to be 
prototypical products and are treated as physical objects (hardware) or information objects (software). 
If a configured product requires software to be installed (e.g., a laptop with Windows 10), then the 

 
17 https://www.eclasscontent.com/  
18 https://www.etim-international.com/  

https://www.eclasscontent.com/
https://www.etim-international.com/
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concrete Windows 10 installation on the configured (prototypical) laptop is also considered a physical 
object (a physical Feature) – see the Software use case for more details. 

 Examples 

Figure G.5.1 shows the class and subclass relations of a product. A product can have many different 
configurations and therefore many different prototypes. Because the number of such different prototypes 
would be exponential to the number of different possible configurations, it is often the case that not all 
configurations are explicitly shown with separate classes. In the diagram below, we can see an example 
of an instance of a prototype for a switchgear which is of a type 8DSHStandard, it has a single bus bar and 
it is a wall standing switchgear. In the case when not all different configurations are represented with 
separate classes (such as SingleBusBar_Switchgear or WallStanding_Switchgear), the configuration of the 
instance prototype should be inferred from its properties. In addition to modelling the prototype to be 
an instance of the most specific product class, it is also represented as an instance of a specially 
designated class Prototype. We can observe this in the example, where the instance 
prototype_8DSH_singlebus_wall_standing_switchgear is an instance of the specific product class 
8DSH_Singlebus_WallStanding_Switchgear and it is also an instance of the class Prototype. 

 

Figure G.5.1: Example of product classification and a prototype instance 

 

Figure G.5.2 illustrates how product knowledge such as product versions and successor relationships are 
modelled between prototype instances of the same specific product class.  Here we observe that the two 
prototype instances are both instances of the same specific product class 
(8DSH_SingleBusBar_WallStanding_Switchgear) and of the class Prototype. The difference is in their 
version number, which is represented as a data property. The two instances are related via the 
relationship hasSuccessor. 

Figure G.5.3 shows how to relate a concrete maintained product to its corresponding prototype from the 
catalogue.  The catalogue prototype has a unique manufacturer’s article number, while the concrete 
product has a unique serial number. The concrete product is related to the corresponding prototype via 
relationship hasDesign. For a functional location at which the concrete product is installed, permissible 
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design alternatives are modelled by making the functional location an instance of the complex class 
hasDesign only {prototype1, prototype2, …, prototypen}. 

 

Figure G.5.2: Product versions and product successor 

 

 

Figure G.5.3: Relationships among a concrete product, prototype product, and a functional location 

In the last two examples we show how the properties, as well as the configuration of a product are 
expressed on instance level.  In Figure G.5.6 we observe how the different properties of a product are 
represented. Here, the properties of the switchgear instance are instances of RatedVoltage and Standard. 
Such product properties often come from standards such as ecl@ss; see Figure G.5.4 and  Figure G.5.5 for 
respective ecl@ss definitions of our example properties. In terms of Part 14, RatedVoltage is a subclass of 
PhysicalQuantity, while Standard is a subclass of Quality.  

Please note that a proper way of modelling standards would require to introduce classes such 
IECConformantProduct; however, real-life use cases (including representation of ecl@ss properties) 
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requires its representation as a property of the product. Also note that in many use cases, a more compact 
representation of properties as OWL object or data properties is suitable. 

 

Figure G.5.4: Rated Voltage property definition in ecl@ss 

 

 

Figure G.5.5: Compliant Standard property definition in ecl@ss 

The fifth example (Figure G.5.7) shows how prototype configuration rules are defined. 

Simple example interlocking (configuration) rule:  

qualityQuantifiedAs(switchgear_standard, GOST) ->  

qualityQuantifiedAs(switchgear_ratedVoltage, 12-kV) or 
qualityQuantifiedAs(switchgear_ratedVoltage, 24-kV) 

Such rules are used e.g. in product configuration user interfaces. Please note that these rules tend to be 
very complex, also interlocking properties of switchgear assembled components (hasAssembledPart can 
be used to relate a prototype switchgear to its components) and their interfaces (connection ports). 

https://www.eclasscontent.com/index.php?action=cc2prdet&language=en&version=11.1&id=&pridatt=0173-1%2302-BAH005%23006
https://www.eclasscontent.com/index.php?action=cc2prdet&language=en&version=11.1&id=&pridatt=0173-1%2302-AAE327%23001
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Figure G.5.6: Example of switchgear’s properties 

 

 

Figure G.5.7: Product configuration example 
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 Aspect-based reference designation system  

ISO/IEC 81346 (RDS) is a standard from systems engineering for codification of system breakdown 
structures and reference designation systems. In particular, it provides a means of structuring system 
information into aspects, providing views onto the same asset from distinct perspectives. This allows 
differentiating between information relating to an assets function, its location, and its components. 

RDS focusses on assets as specified. It provides a top-down view by structuring information in the design 
stage of an asset’s life cycle. These specifications describe the properties that the physical products are 
intended to have. As such it is a desirable candidate for integrating with ISO 15926-14 ontologies for 
checking whether an asset satisfies its design specifications. 

The goal of this use case is to demonstrate how a design-level view such as that which ISO/IEC 81346 
provides can be integrated with ISO 15926-14 ontologies. It allows for both a top-down view on the asset 
(determining specifications based on complex part-of structures, their relationships, as well as which 
physical asset must comply with these) as well as a bottom-up view from the data (grouping related 
specifications on a physical asset and associating these with a tag). 

 Status 

Notes from the Editors: 

• Review modelling details of the example 
• Provide a self-contained ontology example 
• Provide templates for modelling patterns 

 Modelling 

The model is naturally divided into three models corresponding to distinct levels of abstraction, as 
depicted in Figure G.6.1. 

 

Figure G.6.1: Levels of Abstraction 

This division is a natural interpretation of the RDS. Figure C.5 in the ISO/IEC 81346-1 document describes 
how the various aspects can be represented either as a group of objects (one for each aspect) or merged 
into a single object. In this use case, the left-hand side of the figure (where each aspect is a distinct object) 
is represented at the Specification level, whereas the right-hand side (where the objects are merged into 
one) is modelled at the Asset level. 
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 Specification level 

The Specification level models specifications made during the design of an asset. It organizes these 
specifications into various aspects or part-of breakdown structures according to ISO/IEC 81346. At this 
level, design specifications are represented in a reified form, that is, as OWL individuals. In this manner 
design specifications related to different aspects can be referenced, as they each have a unique IRI, and 
organized into functional, location, and product part-of structures. This corresponds to the left-hand side 
of Figure C.5, where each aspect is its own object. Integrating specifications across aspects is handled at 
the Asset level. 

 Asset level 

This level models functional objects and how they relate to the specifications represented in the 
Specification level. Here, the specifications are interpreted as axioms, which are used to verify whether a 
given functional object satisfies the restrictions posed to it by its design specifications. These objects 
correspond to the cube view on the right-hand side of Figure C.5, where the different aspects are viewed 
as a single object. 

 Application level 

This level corresponds to the data and properties related to existing physical assets. This data is typically 
stored in a variety of structured formats, such as data management systems and spreadsheets. 

 Linking the Levels 

Linking these levels is not trivial. The individuals in the topmost model are reified specifications. These 
provide a restricted view (per aspect) on the design specifications made to a functional object. This 
functional object (which we refer to as the system individual) is introduced at the Asset. However, in the 
context of the Asset level, the specifications serve as restrictions on the system individual’s properties. 
Thus, the reified specification individuals from the top layer are interpreted as axioms in the Asset level. 
The connection between the axioms in the Asset level and the reified specifications in the Specification 
level is achieved via annotation properties and punning. 

The actual data and property values lie at the Application level. To populate the Asset level with this data, 
it is gathered and translated into OWL assertions via mappings and OTTR templates [23]. 
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 Relation to ISO/IEC 81346 Tags 

One of the great benefits to the aspect structure within ISO/IEC 81346 is the manner in which it facilitates 
a formalized method of generating tags. Part 2 of the standard provides a syntax for identifying system 
individuals through the aspects’ breakdown structures. Tags describe a way of traversing the breakdown 
structures and are a concatenation of strings of the form: 

[PREFIX][IDENTIFIER] 

where PREFIX can be “-“, “+”, or “=”, representing the product, location, and function aspects respectively.  
Thus, =B1-A1 is a tag for asset with identifier A1 which is a subproduct of the asset with functional 
identifier B1. 

The modelling described in this use case is highly compatible with these tags. On the one hand, given a 
set of tags the respective breakdown structures can be generated at the Specification level. On the other 
hand, tags for systems at the Asset level can be generated using the breakdown structures at the 
Specification level. 

 Example 

To illustrate the modelling, we consider the functional object pump1 of type Electric Motor. For this 
particular functional object, the following specifications were made during the design phase: 

• pump1 shall reside in a non-explosive atmosphere 

• pump1 shall have a capacity greater than 100 m3/h 

• pump1 shall weigh less than 200 kg 

All design specifications within the project are modelled at the Specification level. These are illustrated 
in Figure G.6.2 (Function aspect), Figure G.6.3 (Location aspect) and Figure G.6.4 (Product aspect). 

 

Figure G.6.2: Function aspect of functional object pump1  
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Figure G.6.3: Location aspect of functional object pump1 

 

Figure G.6.4: Product aspect of functional object pump1 

The specification individuals for each aspect are distinct objects with distinct IRI’s. The integration of the 
three aspects (cf. Figure C.5 of the ISO/IEC 81346-1 standard) happens at the Asset level. Here a system 
individual is introduced as a FunctionalObject, which relates to the specification individuals at the 
Specification level. This system individual represents the cube view provided by ISO/IEC 81346-1 and 
corresponds to the right-hand side of Figure C.5. The result is depicted in Figure G.6.5. 
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Figure G.6.5: Integration of three aspects using the system pump1_system 

The properties of an asset are assigned to the system individual. In order to verify that these properties 
satisfy the restrictions posed by the specifications, the individuals at the Specification level are translated 
to restriction axioms at the Asset level: 

Individual: :pump1 
    Types:  
      lis:residesIn only :Non-explosive_atmosphere, 
      :hasCapacity only xsd:integer[>= 100], 
      :hasWeight only xsd:integer[<= 200] 

 
These restrictions are linked to the specification individuals on the Specification level. This is achieved 
by annotating the restriction axioms as follows: 

Individual: :pump1 

    Types:  

 Annotations: partOfLocationSpecification <http://example.org/pump1_LocationSpecification> 
        lis:residesIn only Non-explosive_atmosphere, 

 Annotations: partOfLocationSpecification <http://example.org/pump1_FunctionSpecification> 
        hasCapacity only xsd:integer[>= 100], 

 Annotations: partOfLocationSpecification <http://example.org/pump1_ProductSpecification> 
        hasWeight only xsd:integer[<= 200] 
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In this manner, the restrictions can be grouped according to their aspect into, respectively, the OWL 
individuals pump1_LocationSpecification, pump1_FunctionSpecification, and pump1_ProductSpecification. 

 Requirements 

Requirements are posed to assets, such as oil platforms, process plants, compressors or pumps, at each 
stage in their life cycles. This use case discusses how to represent requirements in the context of asset 
life-cycle information, following the methods described in the Reified Requirements Ontology [24]. 
Additionally, multiple approaches to how OWL reasoning can be used for requirement verification are 
discussed. 

 Status 

Notes from the Editors: 

• The Terminology section should be made clearer, to emphasize the form Scope(x) & Condition(x) 
-> Demand(x) – currently, it’s not obvious that the demand is also a class 

• Use of description logic symbols can probably be avoided, in favour of natural language analogues 
• Providing templates and ontology is probably best left to the Requirements Ontology; refer to 

that resource if they become available 

 Terminology 

In this document, we adopt the following terminology used in the Reified Requirements Ontology [24]: 

• Requirement:  a proposition with the modality of it is required that ...:  
o a requirement contains a scope, and demand, and may contain a condition;  
o this is to be read intuitively as: all elements of the scope that satisfy the condition must meet 

the demand. 
• Scope:  a class of subjects to which a requirement should apply. 
• Condition: a condition the scope of a requirement must satisfy.  
• Demand: the expected outcome or documentation that all elements of Scope that satisfy the 

Condition are obligated to have. 

 Source data schemas and systems 

Industrial requirements are available both in an unstructured manner, e.g., in PDF’s and other natural 
language documents, as well as in structured formats,  such as Excel spreadsheets or digital requirements 
catalogues [25]. 

 Modelling 

As opposed to the declarative statements in an OWL ontology, i.e., statements that something is true, 
requirements are imperative statements, i.e., statements that something should hold. Thus the logical 
framework underlying OWL is not suitable to fully capture the semantics of requirements [3]. For this 
reason, we divide the modelling of requirements into two tasks: (1) the representation of requirements, 
e.g., for the purposes of documentation; and (2) verification of requirements. The former follows the 
modelling practices outlined in the Reified Requirements Ontology [21] and is described in Section G.7.4.1. 
In Section G.7.4.2 we propose various encodings of requirements as OWL axioms in order to use reasoning 
to verify whether (certain types of) requirements are met by specific assets. Note that the two approaches 
discussed in Sections G.7.4.2.1 and G.7.4.2.2 have different advantages and, as such, complement each 
other well in practical use. 
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The connection between reified requirements and the OWL axioms used for their verification is achieved 
via OWL punning,19 i.e., interpreting IRI’s as both an OWL individual and an OWL class. Examples of this 
approach are provided below. 

 Reified Requirements 

For the purposes of documenting requirements, we introduce referrable objects called reified 
requirements as OWL individuals to the model. Each reified requirement has an SCD Clause associated to 
it via the has SCD Clause object property. The SCD Clause bears information regarding which class of 
individuals a requirement applies to (defined by the scope and condition of the SCD clause) as well as 
what one demands of such individuals. It is important to note that the SCD Clause does not indicate the 
normative strength of the proposition.  This is rather indicated by the requirement’s placement in the 
Proposition > Advice > Recommendation/Requirement class hierarchy provided by the Reified 
Requirements Ontology [1]. 

It is conceivable that multiple organizations pose requirements with the same SCD clause; that is, 
effectively, that they require the same demand of the same assets. To differentiate requirements posed 
by distinct entities, we use the posited by object property from the Reified Requirements Ontology, linking 
the requirement to its source. 

Modelling example: Let us consider the requirement Every RDS Electrical System in an Explosive Gas Zone 
should have an EX Certificate, which is posited by the Organization org_1. This is modelled as depicted in 
Figure G.7.1. 

 

Figure G.7.1: Modelling example of a reified requirement 

 Verifying Requirements 

OWL 2 semantics are not capable of capturing the defeasible nature of requirements [26]. Nevertheless, 
one can construct OWL axioms from the reified requirements that approximate the intended semantics 
well enough to provide valuable insight. In the following we present multiple such approaches. 

The connection between the axioms described in this section and the reified requirements from the 
previous section is achieved via punning, which is a feature in OWL that allows using the same IRI to 

 
19 https://www.w3.org/TR/owl2-new-features/#F12:_Punning 
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denote classes, properties, and individuals. In the case of axiomatizing requirements, the Scope, Condition, 
and Demand individuals of a requirements’ SCD Clause are punned as classes in OWL axioms. 

We discuss the various axiomatizations for requirement verification based on our previous example 
requirement: Every RDS Electrical System in an Explosive Gas Zone has an EX Certificate. Furthermore, we 
illustrate the differences of the approaches by discussing how the semantics of the axioms act in the 
following scenarios: 

• Scenario 1: ES1 is an RDS Electrical System in an Explosive Gas Zone and we do not know whether 
it has an EX Certificate. 

• Scenario 2: ES2 is an RDS Electrical System in an Explosive Gas Zone that does not have an EX 
Certificate. 

• Scenario 3: ES3 is an RDS Electrical System in an Explosive Gas Zone that has an EX Certificate. 

G.7.4.2.1 Naïve Axiomatization 

The Scope, Condition, and Demand of a requirement are punned and interpreted as OWL classes. The 
requirement is then represented by axioms of the following schema 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ⊓ 𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝐶𝐶 ⊑ 𝐷𝐷𝑆𝑆𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶 

Thus, our example requirement would be represented by the following axiom: 

𝑅𝑅𝐷𝐷𝑆𝑆_𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐶𝐶𝑆𝑆𝐷𝐷𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸𝐶𝐶𝑆𝑆𝐷𝐷 ⊓ 𝐼𝐼𝐶𝐶𝐸𝐸𝐼𝐼𝑆𝑆𝐸𝐸𝑆𝑆𝐸𝐸𝐶𝐶𝐼𝐼𝑆𝑆𝐼𝐼𝐷𝐷𝐸𝐸𝐼𝐼𝑆𝑆𝐶𝐶𝑆𝑆 ⊑ 𝐻𝐻𝐷𝐷𝐸𝐸𝐸𝐸𝐻𝐻𝐶𝐶𝑆𝑆𝐸𝐸𝐶𝐶𝐶𝐶𝐻𝐻𝐶𝐶𝑆𝑆𝐷𝐷𝐶𝐶𝑆𝑆 

• Scenario 1: ES1 is a member of RDS_ElectricalSystem and InExplosiveGasZone. Thus, it is inferred 
to be in the class HasEXCertificate.  

• Scenario 2: ES2 is a member of RDS_ElectricalSystem and InExplosiveGasZone, and is inferred to 
not be a member of HasEXCertificate. Hence the ontology is inconsistent. 

• Scenario 3: ES3 is a member of RDS_ElectricalSystem, InExplosiveGasZone, and HasEXCertificate, 
thus satisfying the axiom. 

Scenario 1 demonstrates that, with this axiomatization, a lack of information is not detected; ES1 is 
assumed to have an EX Certificate unless we specifically know it does not. 

The benefit of this approach is most clearly exemplified by Scenario 2. Whenever a requirement is 
broken, the ontology becomes inconsistent. Then justification tools built into OWL reasoners can 
provide information about the offending assets as well as the requirements they break. 

However, this approach’s benefit can also be a disadvantage: if assets often do not satisfy requirements, 
the ontology will often be inconsistent. This severely limits the usability of the ontology for purposes 
other than using the inconsistency justification tools for requirement verification: due to inconsistency, 
basic functionalities of the reasoner, .e.g. classification and query answering, no longer function. 

G.7.4.2.2  Axiom with Exceptions 

As before, the Scope, Condition, and Demand are punned and interpreted as OWL classes and 
requirement is represented according to the following schema: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 ⊓ 𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝐶𝐶 ⊑ 𝐷𝐷𝑆𝑆𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶 ⊔′ 𝑁𝑁𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝐷𝐷𝑆𝑆𝐸𝐸𝐶𝐶𝐷𝐷𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶′. 

Our example is then represented by the following axiom: 

𝑅𝑅𝐷𝐷𝑆𝑆_𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆𝐶𝐶𝐸𝐸𝐶𝐶𝑆𝑆𝐷𝐷𝐸𝐸𝑆𝑆𝐸𝐸𝐸𝐸𝐶𝐶𝑆𝑆𝐷𝐷 ⊓ 𝐼𝐼𝐶𝐶𝐸𝐸𝐼𝐼𝑆𝑆𝐸𝐸𝑆𝑆𝐸𝐸𝐶𝐶𝐼𝐼𝑆𝑆𝐼𝐼𝐷𝐷𝐸𝐸𝐼𝐼𝑆𝑆𝐶𝐶𝑆𝑆 ⊑ 𝐻𝐻𝐷𝐷𝐸𝐸𝐸𝐸𝐻𝐻𝐶𝐶𝑆𝑆𝐸𝐸𝐶𝐶𝐶𝐶𝐻𝐻𝐶𝐶𝑆𝑆𝐷𝐷𝐶𝐶𝑆𝑆 ⊔ ′𝑁𝑁𝑆𝑆𝐶𝐶𝐶𝐶𝑆𝑆𝐷𝐷𝑆𝑆𝐸𝐸𝐶𝐶𝐷𝐷𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐶𝐶′. 
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• Scenario 1: ES1 is a member of RDS_ElectricalSystem and InExplosiveGasZone. It is inferred to be 
in the union of HasEXCertificate and Non-Compliant Subject, however the reasoner cannot state 
which of the classes it is in without further information. 

• Scenario 2: ES2 is a member of RDS_ElectricalSystem and InExplosiveGasZone. Since it is inferred 
to not a member of HasEXCertificate, it is inferred to be a member of Non-Compliant Subject. 

• Scenario 3: ES3 is a member of RDS_ElectricalSystem, InExplosiveGasZone, and HasEXCertificate. 
Thus, the axiom is satisfied by ES3. 

By adding the class Non-Compliant Subject to the axiom, the lack of information in Scenario 1 is no 
longer assumed to satisfy the requirement. In this case, more information is needed for the reasoner to 
determine whether the requirement is broken (e.g., the non-existence of an EX Certificate must be 
known) or whether the requirement is satisfied (e.g., the existence of an EX Certificate must be known). 

The broken requirement in Scenario 2 is handled by inferring that ES2 is a member of Non-Compliant 
Subject. In this way, the ontology does not become inconsistent whenever a requirement is broken, and 
justification tools can be used to explain class membership in Non-Compliant Subject. 

In Scenario 3, the axiom does not infer that ES3 is a Non-Compliant Subject. Note that a different 
requirement could infer ES3 to be a member of Non-Compliant Subject, as HasEXCertificate and Non-
Compliant Subject are not disjoint classes. 

G.7.4.2.3  Other approaches 

There is ongoing work on using formalisms that extend OWL with the defeasible semantics necessary for 
reasoning over requirements, e.g., rule-based formalisms such as SWRL and Datalog, and theorem provers 
for modal logic. 

 BoMs and BoPs 

Typically, the key elements of a process plant will be defined in terms of the following dimensions   

• Plant breakdown structure 

• Bill of Material (BoM) information (part structure breakdown of a product)  

• Bill of Process (BoP) information (processual breakdown of a production process)  

The scope of this use case is to cover the latter two. They are strongly related, indeed often intertwined, 
and have a bias towards discrete manufacturing industries, while in process industries you often have 
recipes with ingredients.  

 Status 

Notes from the Editors:  

• The discussion of functional objects can be greatly simplified, partly by reference to other use 
cases 

• Details of the modelling diagrams, with “variants”, need review 
• Provide a worked example as ontology, and OTTR templates to populate the recommended 

patterns 
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 Source data schemas and systems 

An experimental setup of a quality station built from typical Siemens automation components was used 
as an example. The station can measure the height of objects for quality control as part of an overall 
production process (e.g., an object milled from a raw block of metal can be checked to determine whether 
its physical dimensions are within a certain tolerance interval).  

Figure G.8.1 shows a functional breakdown of the system together with a photo: 

 

Figure G.8.1: Example of a quality station 

The basic representation question in this area is how to distinguish objects that make a commitment to 
be functional vs physical. The as-built setup will have attributes related to the functional requirements as 
well as physical-specimen attributes, like serial numbers, that need to be captured.  

All components are considered production equipment in this sense, but the respective equipment class 
cannot make any commitment as to whether an equipment is physical or functional. For each system 
component there is a choice of being either physical or functional; and the following arguments can be 
forwarded to support the choice.  Traditionally the argument for functional vs physical criteria of identity 
are as follows:  

• for a functional (possibly virtual) subsystem like the transportation system, its identity is rather 
defined by its formal/function of transportation of objects within the station, while its replaceable 
parts (such as specific sensors etc.) could be exchanged e.g. in the course of maintenance.  

• for a physical component like the drive controller, its identity is rather defined by its material 
extent and characteristics, as in this use case, the specific controller that is replaced as a whole by 
another controller with different serial number during maintenance. 

This use case does not cover the additional issue of the software PLC program included as part of the 
system; this is covered in Section G4. 
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 Modelling 

 ISO 15926-14 Context  

For the Part 14 representation here, each element of the system as designed is a FunctionalObject. 
Installed, physical parts (the ones with serial numbers) are related to the functional objects by the 
installedAs relation.  

ProductionEquipment is defined as a subclass of FunctionalObject, and also of PhysicalObject:  

Class: WorkCell 
 SubClassOf: lis:FunctionalObject 

Class: QualityStation 
 SubClassOf:  WorkCell 

Individual: myQualityStation 
 Types: QualityStation 

We represent all system parts as FunctionalObject individuals. hasInstalled (installedAs) links point to 
physical individuals for any entities that have serial numbers; noting that for replaceable parts, there will 
typically be more than one thing that is installedAs any of the functional objects over time. This is central 
to the way one can handle lifecycle of systems and components in part 14 (cf. Annex F). Time-stamps may 
be added to manage which items were installed at different periods of time. 

 Example 

Two possible modelling variants are considered in this use case, represented by Figure G.8.2 and Figure 
G.8.3. 

 

Figure G.8.2: Tracking installed components (variant I) 
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Variant I) in which tracking the installed components over time matters; and Variant II) where it does 
not matter, and a more parsimonious model is desirable for practical purposes that excludes any extra 
individuals in a plant structure representation.   

 Explanatory notes 

It is important to be clear on what commitment a class like ProductionEquipment, extending from Part 14 
in a core ontology for the production domain, should make with respect to an object being either 
functional or physical or both. A clear separation between functional component descriptions and their 
installations via installedAs would suggest to primarily focus on the functional hierarchy when describing 
a plant structure, as in Variant I. On the other hand, joining the physical and functional views would suit 
the view of simple UCs as in Variant II.  

One may consider a functional object as a kind of variable, to be instantiated with constants that are the 
installed objects. This helps build the intuition on how the hasInstalled (installedAs) relation is used for 
representing that the FunctionalObject (the variable) is occupied by an artefact (other things than 
artefacts also possible). The intention is that one will have a part—whole break-down of the plant, using 
functional objects, and then point to installed artefacts where needed.  

The advantage of this approach is that we obtain a straightforward way to check the specification that's 
carried by the functional object -- which is typically expressed by range constraints on data properties -- 
with the fixed attributes of the product individual: this can be achieved by transforming the ontology by 
declaring the FunctionalObject as the installed object, and executing a reasoner to identify 
inconsistencies. (Additional meta-data specifying which product individuals were installed in which 
periods of time would be required to make this possible.)  

Variant II is indeed an example of such a transformed ontology. For ProductionEquipment, we have two 
alternatives. If ProductionEquipment can be the class of a piece of equipment in storage (i.e., equipment 
that hasn't been installed in a system, that doesn't contribute to a plant function), then it will mean: A 
member of ProductionEquipment is an artefact designed to perform a function that is usable in a 
production facility.  

If ProductionEquipment is defined to be a class of equipment that participates in a plant system, it will not 
be appropriate to use it for something that's on the shelf in storage. In such a case, we still want 



Working Draft (WD) Proposal for ISO 15926-14:2020(E) 

 95 

PhysicalObject to be a superclass, but more importantly, it will be a subclass of System -- carrying the 
restriction that any member is part of a system and contributes to the function of a system. 

 Physical quantities and units of measurement  

The use case discusses how to represent physical quantities (also known as quantity kinds, which 
includes mass, length or temperature) and units of measures (such as kilogram, meter or kelvin).  

 Status 

Notes from the Editors: This use case requires further development.  

General comments: 

• Re-focus the use case to provide more practical advice on the use of ISO 15926-14 (and, cutting 
down on detail about other ontologies) 

• Improve analysis of WoT TD, SOSA/SSN and iot.schema.org 
• Extend the discussion about value (or measurement) scales and how to include them into ISO 

15926-14 
• Discuss the notion of uncertainty of a measurement (including standard and relative standard 

uncertainty) 
• Discuss the notion of vector quantities (e.g. velocity, acceleration and force) and how to represent 

them in an ontology, in particular, direction. Notice that the ontologies OM and QUDT do not 
address this problem 

• Examples must be revised. In particular Figure 9.3 is incomplete and relevant definitions are 
missing. 

 
Comments about quantity values: 

• Quantity values (u observations) are a central notion for these ontologies. In fact, iot.schema.org 
and OM only explicitly define relations between quantity values (or observations) to a 
phenomenon but not the other way around. 

• The use and benefits of short-cuts should be further investigated, and the conclusions of this 
analysis should be reflected in the document presenting ISO 15926-14 

• Following QUDT, it is possible to introduce specific properties to represent the uncertainty of a 
quantity value (or measurement)  

• The notion of observation may be introduced, as subclass of lis:Activity, as a mechanism to relate 
quantity values to phenomena, observable properties (physical quantities), processes and 
sensors  

• The notion of observations also solves the problem of associating timestamps to quantity values, 
which is not addressed by the current version ISO 15926-14 

• It is important to ensure interoperability when quantity values are represented using OM, QUDT 
(SOSA/SSN), WoT and iot.schema (to be further investigated) 

Some comments about system of quantities: 
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• The classes, one for representing systems of quantities and one for representing systems of units, 
are not defined in the current version of ISO 15926-14. Similar to the class lis:UnitOfMeasure, 
these classes can be defined as subclasses of the class lis:InformationObject. 

• Together with these classes, the necessary object properties may be defined to relate base and 
derived quantities (or units) to a system of quantities (or units) 

 
Some comments about dimensions: 

• The class representing dimensions is not defined in the current version of ISO 15926-14. Similar 
to the class lis:UnitOfMeasure, this class can be defined as subclasses of the class 
lis:InformationObject 

• Together with the class for dimensions, seven data properties (one for each base dimension) must 
be defined 

Some comments about quantity kinds: 

• It follows the design pattern quantity kinds as classes 

• It does not provide any class restriction for the class lis:PhysicalQuantity that states how 
individuals of this class are related to quantity values (lis:ScalarQuantityDatum), types of units 
(lis:UnitOfMeasure) and dimensions (not defined) 

• It does not clarify the relation with existent systems of quantities (ISQ) and units (SI, Imperial, 
USCS, etc.) 

• The distinction between base and derived quantity kinds is also missing 

Some comments about units of measurement: 

• The class lis:UnitOfMeasure must define (using class restrictions) relevant properties for 
individuals representing units of measurement including: 

o conversion multiplier and offset together with the unit used as reference for these 
conversion values,  

o dimension vector,   

o related quantity kinds, 

o related base (or reference derived) unit (for unit conversion) and 

o constituent units (if it is a composed unit) 

• A hierarchy of classes of units of measurement based on relevant classes defined by OM and QUDT 
should also be considered. In particular:  

o Classes of units of measurement related to classes of quantity kinds (as in OM), including 
the class dimensionless unit 

o Classes of units of measurement related to systems of measurement such as SI or Imperial 
(as in QUDT) 

o Classes of compound units (as in OM)  
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o In general, ISO 15926-14 should provide more definitions related to quantity kinds and 
units of measurement which are very important topics in engineering. This should also 
facilitate the integration of ISO 15926-14 with OM and QUDT but also to a future units of 
measurement ontologies 

 Terminology 

According to the Oxford dictionary, quality is a distinctive attribute or characteristic possessed by an 
entity (known as the bearer of the quality). In order for a quality to exist some other entity (or entities) 
must also exist [17].   

Following the terminology from [16], the object or event that has a quality is referred to as a phenomenon. 
Similarly, a (physical) quantity is an observable property of a phenomenon that can be measured 
numerically, and it is determined by two main attributes: a quantity kind and a quantity value. A quantity 
kind is the aspect of phenomenon being measured such as length or mass. A quantity value as the 
magnitude of the quantity expressed as the product of a number and a unit. Other sources, such as 
Wikipedia, defines the notions of concrete number, which is a number associated to the things being 
counted and a denominate number is a type of concrete number where a unit of measure is related to it.  

A system of quantities (or measurement) is a collection of units and quantities and rules related to each of 
them. Relevant examples of this type of systems are the International System of Quantities (ISQ) [19], the 
Imperial system and the US customary measurement system.  Quantity kinds (similarly for units) are 
usually categorized in these systems as base and derived quantities. A base quantity is a physical quantity 
in a subset of a given system of quantities that is chosen by convention, where no quantity in the set can 
be expressed in terms of the others. A derived quantity is a quantity in a system of quantities that is a 
defined in terms of the base quantities of that system. The International System of Quantities (ISQ) [19], 
for instance, defines seven base quantities and units, and also many derived quantities and units. ISQ base 
quantities include Length (l), Mass (m), Time (t), Electric Current (I), Thermodynamic Temperature (T), 
Amount of Substance (n), and Luminous Intensity (Iv). Furthermore, ISQ base units are Meter (m), 
Kilogram (kg), Second (s), Ampere (A), Kelvin (K), Mole (mol) and Candela (cd), where each base units has 
its correspondent base quantity.   

A (physical) dimension is defined in [16] as an abstraction of quantity ignoring magnitude and units. The 
notion of dimension was introduced to facilitate the characterization of quantities of the same kind (also 
known as commensurable quantities), without referring to specific units. Quantities of the same kind can 
be compared and therefore, conversion mechanisms can be defined for these quantities and units. This is 
summarized by the principle of dimensional homogeneity: only commensurable quantities (physical 
quantities having the same dimension) may be compared, equated, added, or subtracted. In particular, 
ISQ defines seven base dimensions (one for each base quantity) and they are also known by the same 
name but different symbol: Length (L), Mass (M), Time (T), Electric Current (I), Thermodynamic 
Temperature (Θ), Amount of Substance (N) and Luminous Intensity (J). Derived quantities are defined as 
the product of powers of the base dimensions. For instance, the derived quantity kind area is defined as 
L2 (two times the dimension Length). Similarly, the derived quantity acceleration is defined as LT-2 (one 
time dimension Length divided by two times dimension Time). It is easy to verify that the quantities area 
and acceleration are not commensurable. Notice also that it may nevertheless be meaningless to compare 
or add two physical quantities with identical dimensions. For instance, torque and energy share the 
dimension L2MT−2 but they are fundamentally different physical quantities. 

Quality (and quantity) kinds can have more than one value scale (or measurement scale). In general, a 
value scale might have some of the following properties: identity, magnitude, equal intervals and absolute 
(or true) zero. The property identity means that each value has a particular meaning. For instance, the 
color red and the color yellow have different meanings. The property magnitude implies that values have 
an inherent order from smaller to larger. For instance, the value 8 is larger than the value 3 in the Richter 
scale. The property equal intervals enforces that differences between values anywhere on the scale is the 
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same. For instance, the increase in temperature between 20 and 30°C is the same as the increase between 
90 and 100°C. Finally, the property absolute (or true) zero means that the scale has an absolute (or true) 
zero value, below which no values exist. For instance, there is no duration or weight lower than 0.      

[18] defines four types of value (measurement) scales: nominal, ordinal, interval and ratio. Nominal scale 
has discrete values and they do not overlap. This type of value scale only fulfills the property identity. For 
instance, the quality gender might have a nominal scale with the values male and female. Similarly, the 
quality color might have the nominal scale basic colors that might include the values red, blue or black. 
Ordinal scale has also categories and these categories are ranked in a certain order. This type of value 
scale has the properties identity and magnitude. The Mohs scale of mineral hardness and the Richter scale 
for earthquake sizes are examples of ordinal scales. Interval scale has ordered values with meaningful 
divisions, the magnitude between consecutive intervals are equal. This type of scale includes the 
properties identity, magnitude and equal intervals. Celsius and Fahrenheit scales are examples of interval 
scales. The last type of value scale defined by [18] is ratio scale which extends the type interval scale with 
the property absolute (or true) zero. Many quantity kinds in physical sciences such as mass, length and 
duration fit with this type of scale. In contrast to interval scales, ratios are now meaningful, and it is 
possible to say, for instance, that diameter 20 meter is twice diameter 10 meter. Both type of scales, 
interval and ratio, commonly express magnitude using numerical values in combination with units of 
measure. 

 Relevant references  

This use case is based on the work described in the following references: [15, 16]. Other relevant sources 
of information considered during the preparation of this use case are the ontologies of units of 
measurement OM20 and QUDT21, the W3C recommendations SOSA/SSN22 and WoT23, and the IoT 
ontology iot.schema.org24.  

 Scope 

In the current version of the use case, we only discuss the following notions: phenomenon (or feature of 
interest), quantity, quantity kind, quantity value, unit of measurement and physical dimension. Other 
notions like uncertainty of a measurement, types of value scales and vector quantities are not part of the 
current version, but they might be studied in future versions. 

 Discussion 

 Prefixes 

When referring to terms defined by OM, we use the prefix om. For the case of QUDT, we use the following 
prefixes: qudt (core terms), quantity (types of quantities), quantitykind (quantity kinds), qkdv 
(dimensions). The prefixes sosa and ssn refer to terms in SOSA/SSN. For WoT, we use the prefix wot, and 
for iot.schema.org, we use the prefix iot. For terms defined in ISO 15926-14, we use the prefix lis and for 

 

20 https://github.com/HajoRijgersberg/OM  

21 https://github.com/qudt/qudt-public-repo  

22 https://www.w3.org/TR/vocab-ssn/  

23 https://www.w3.org/TR/wot-thing-description/  

24 http://iotschema.org/  

https://github.com/HajoRijgersberg/OM
https://github.com/qudt/qudt-public-repo
https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/TR/wot-thing-description/
http://iotschema.org/
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terms defined in the ontologies Basic Formal Ontology (BFO) and Information Artifact Ontology (IAO), we 
use the prefixes bfo and iao, respectively. 

 Phenomenon (or feature of interest) 

The notion of phenomenon (or feature of interest) is not explicitly defined by QUDT and OM. OM includes 
the object property om:hasPhenomenon to relate an individual representing an observable property 
(om:Quantity) of a phenomenon to the individual representing this phenomenon. ISO 15926-14 defines 
the classes lis:Activity and lis:Object for representing a phenomenon. ISO 15926-14 also includes the 
object properties lis:hasQuality and lis:hasPhysicalQuantity to relate an individual representing a 
phenomenon to its quality (or physical quantity), with inverse relations lis:qualityOf and 
lis:physicalQuantityOf. 

SOSA/SSN defines the class sosa:FeatureOfInterest to represent the notion of feature of interest (or 
phenomenon). Individuals of this class can be associated to individuals of the class ssn:Property, which 
represent qualities of a feature of interest, using the object property ssn:hasProperty. In addition, it is 
possible to relate a feature of interest to an individual of the class sosa:Observation, which represents a 
measurement, using the object property sosa:isFeatureOfInterestOf. The inverse relation is also possible 
using the property sosa:hasFeatureOfInterest. 

WoT defines the class wot:Thing as an abstraction of a physical or virtual entity. An individual of this class 
can be related to an individual of the class wot:PropertyAffordance using the object property 
wot:properties. A property affordance represents a state of an individual of the class wot:Thing. 

Similar to SOSA/SSN, iot.schema.org defines the class iot:FeatureOfInterest as the thing whose property is 
being estimated or calculated in the course of an observation. Individuals of the class iot:Property can be 
related to an individual of the class iot:FeatureOfInterest using the object property iot:isPropertyOf. The 
inverse of this property has not been defined (to be investigated).  

 Quantity values 

A quantity value is defined as the magnitude of a quantity (kind) expressed as the product of a number 
and a unit. The ontologies we are considering in this discussion (QUDT, OM, ISO 15926-14, SOSA/SSN, 
WoT and iot.schema.org) coincide to define any quantity value as an individual, which represents the 
combination of a numerical value and a unit.  

ISO 15926-14 defines the class lis:ScalarQuantityDatum to represent quantity values. This class is defined 
similar as the class iao:IAO_0000032 (scalar measurement datum) in the Information Artifact Ontology 
(IAO). The following properties are also available: 

• lis:datumUOM: relates a quantity value to its unit 

• lis:datumValue: relates a quantity value to its numerical value 

QUDT defines the class qudt:QuantityValue to represent quantity values as individuals of this class. The 
following properties can be used: 

• qudt:hasQuantityKind: relates a quantity value to the appropriate quantity kind 

• qudt:unit: relates a quantity value to its unit  

• qudt:value: relates a quantity value to its numerical value 
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• qudt:standardUncertainty: relates a quantity value to a numerical value representing the standard 
uncertainty of the measurement 

• qudt:relativeStandardUncertainty: relates a quantity value to a numerical value representing the 
relative standard uncertainty of the measurement 

OM defines the class om:Measure to represent quantity values. This class does not include any class 
restriction or subclasses. In fact, the definitions of the individuals of this class partially rely on the 
definition of the subclasses of the class om:Quantity. The following properties can be used: 

• om:hasUnit: relates a quantity value to its unit 

• om:hasNumericalValue: relates a quantity value to its numerical value 

SOSA/SSN indicates that the result, defined by the class sosa:Result, of a sosa:Observation or a 
sosa:Actuation can be a quantity value. However, SOSA/SSN does not recommend any particular 
approach for modelling quantity values. It is suggested the possibility of using specific ontologies of units 
of measurement such as OM and QUDT. For instance, the class sosa:Result could be considered equivalent 
to the class om:Measure (or om:Point) defined by OM or the class qudt:QuantityValue defined by QUDT25. 
Therefore, quantity values will be represented as individuals of the class sosa:Result and linked to at least 
one individual of the classes sosa:Observation or sosa:Actuation using the object property sosa:isResultOf, 
which is the inverse property of sosa:hasResult. Notice that an individual of the class sosa:Result does not 
carry out information about the time the measurement was taken. This is information that belongs to the 
individuals of the class sosa:Observation or sosa:Actuation. In addition, it is possible to simplify the 
representation of quantity values using the data property sosa:hasSimpleResult. This is similar to the 
notion of short-cuts for quantity values in ISO 15926-14. 

WoT defines the class wot:PropertyAffordance to represent observable properties of an individual of the 
class wot:Thing, which represents and abstraction of a physical or virtual entity. Each individual of the 
class wot:Thing is related to one or more individuals of the class wot:PropertyAffordance using the object 
property wot:properties. The class wot:PropertyAffordance is defined as subclass of the classes 
wot:InteractionAffordance and wot:DataSchema. The later provides a collection of properties to describes 
data formats base on JSON-Schema26. The properties wot:type, wot:unit, and wot:format are relevant for 
the representation of quantity values. It seems, however, that WoT does not provide a specific class for 
quantity values (to be further investigated). 

iot.schema.org refers to the class schema:QuantitativeValue defined by schema.org to represent physical 
quantities and their quantity values. This class is a subclass of schema:StructureValue that allows the 
definition of complex schemas (similar to wot:DataSchema). The following properties are relevant when 
representing quantity values: schema:value (any type of simple or complex value including 
schema:StructureValue), schema:unitCode (based on UN/CEFACT Common Code), schema:unitText (units 
represented as strings). The class schema:QuantitativeValue and how it can be used to represent quantity 
values should be further investigated. 

ISO 15926-14 recommends the use of short-cuts (cf. Section E.5) to simplify modelling and improve 
reasoning performances by leaving out some classes and properties. Consider the example of the 
definition of the class ex:BigHammer (cf. Section E.1): 

 
Class: ex:BigHammer 

 
25 https://www.w3.org/TR/vocab-ssn/#quantity-values-and-unit-of-measures 
26 https://json-schema.org/ 
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 EquivalentTo: ex:hasMass some  
           (lis:qualityQuantifiedAs some 
    (lis:datumUOM value ex:kilogram and lis:datumValue some float[> 1])) 

 
The definition of the class ex:BigHammer can be simplified as follows: 

Class: ex:BigHammer 

     EquivalentTo: ex:has_mass_in_kilogram some float[> 1]  

 
Some comments about short-cuts: 

• Notice that the simplified definition of the class ex:BigHammer in the previous example does not 
include additional annotation property assertions to indicate the unit of measurement 
ex:kilogram and the quantity ex:Mass. Moreover, ISO 15926-14 does not define these annotation 
properties for units of measure and quantities. 

• The suitability and potential benefits of defining short-cuts might depend of each use case and it 
should be considered carefully. For instance, the use of subclass relations instead of equivalent 
relations in class restrictions might alleviate the impact on reasoning performances and the need 
of implementing short-cuts.  Similarly, the requirement of representing many possible 
combinations of units and physical quantities might also discourage this practice 

 Systems of quantities and units 

Units of measurement are organised on systems of units that they also define how units are related to each 
other. Popular systems of units include the International System of Units (SI), the Imperial System of Units 
(IS or Imperial) and the US Customary System of Units (USCS). Despite the wide adoption of SI, other 
system of units such as Imperial and USCS are still popular. This implies that mechanisms for conversion 
between units of different systems of units must be considered.   

OM assumes ISQ as the only system of quantity kinds. Quantity kinds are defined as subclasses of the class 
om:Quantity. OM also defines the class om:SystemOfUnits, where several system of units such as IS 
(om:InternationalSystemOfUnits) are defined as named individuals. Despite OM including some units 
defined by Imperial or USCS, these systems of units are not explicitly defined in OM. 

QUDT includes the class qudt:SystemOfQuantityKinds which defines named individuals representing 
systems of quantity kinds (e.g. soqk:SOQK_ISQ , soqk:SOQK_IMPERIAL, soqk:SOQK_USCustomary). Because 
only ISQ seems to be defined as a system of quantities, it might not be correct to define additional system 
of quantities (to be further investigated). Each of the individuals representing a system of quantities are 
associated to individuals representing suitable base and derived quantity kinds, and system of units. This 
is done using the properties qudt:hasBaseQuantityKind, qudt:systemDerivedQuantityKind and 
qudt:hasUnitSystem. Notice that these properties are more specific that the properties used when defining 
the class qudt:SystemOfQuantityKinds (to be further investigated).  

In addition to system of quantities, QUDT also defines systems of units represented as named individuals 
(e.g. sou:SOU_IMPERIAL, sou:SOU_SI and sou:SOU_USCS) of the class qudt:SystemOfUnits. The following 
properties (not an exhaustive list) can be used to define a relation between a system of units and relevant 
units: qudt:hasBaseUnit (e.g. unit:KiloGM), qudt:hasDefinedUnit (e.g. unit:KiloGM-PER-SEC2), 
qudt:hasDerivedCoherentUnit (e.g. unit:KiloGM-PER-SEC2), qudt:hasPrefixUnit (e.g. unit:Centi). Notice that 
the distinction between base and derived units makes more sense in SI but QUDT also considers this 
distinction for other system of units (e.g. sou:SOU_CGS).  

ISO 15926-14 does not provide predefined classes or properties to define systems of quantity or units. 
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SOSA/SSN relies on OM and QUDT ontologies for relevant information about systems of quantities and 
units. WoT and iot.schema.org seems to do not make any reference to this topic in their specification (to 
be further investigated). 

 Dimensions 

A (physical) dimension is defined as an abstraction of a quantity ignoring magnitude and unit. The notion 
of dimension was introduced to facilitate the characterization of quantities of the same kind (also known 
as commensurable) without referring to specific units. ISQ defines seven base dimensions (one for each 
base quantity) and they are also known by the same name but different symbol: Length (L), Mass (M), 
Time (T), Electric Current (I), Thermodynamic Temperature (Θ), Amount of Substance (N) and Luminous 
Intensity (J). Derived quantity kinds are defined as the product of powers of the base dimensions. For 
instance, the derived quantity kind area is defined as L2 (two times the dimension Length). Similarly, the 
derived quantity kind acceleration is defined as LT-2 (one time dimension Length divided by two times 
dimension Time). It is easy to verify that the quantities area and acceleration are not commensurable. 
Notice also that it may nevertheless be meaningless to compare or add two physical quantities with 
identical dimensions. For instance, torque and energy share the dimension L2MT−2 but they are 
fundamentally different physical quantity kinds. 

When building hierarchies of classes (or properties) of quantity kinds, dimensions play a key role because 
the subclasses (or subproperties) of a class (or property) representing a quantity kind must have the 
same dimension. For instance, the class ex:DryMass (or the property ex:hasDryMass) can be defined as a 
subclass of ex:Mass (or the property ex:hasMass) because both have the same dimension (Mass, M). 

ISO 15926-14 does not define a classes and the required data properties for dimensions. 

OM and QUDT follow a very similar approach when defining dimensions as dimension vectors, a symbolic 
expression that define a dimension as the product of the powers of the base dimensions. Each dimension 
vector is represented using a named individual and the symbolic expression is modelled using seven data 
property assertions, one for each base dimension. If an individual is asserted using the number zero, it 
means that the base dimension is not relevant for the characterization of a quantity kind or units of 
measure. For instance, the individual representing the base dimension mass is only asserted to the 
integer zero except for the data property that refers to the power of the mass dimension, which is the 
integer one. Noticed that negative numbers are also possible (e.g. the dimension acceleration).  

OM defines the class om:Dimension for representing dimensions. The definition of this class does not 
include any class restriction, but OM also defines seven data properties for each base dimension (e.g. 
om:hasSIMassDimensionExponent). 

QUDT defines the class qudt:QuantityKindDimensionVector for representing dimensions. It includes the 
class restrictions to indicate which data properties can be used to represent the power of each base 
dimension (e.g. qudt:dimensionExponentForMass). 

SOSA/SSN relies on OM and QUDT ontologies for relevant information about dimensions. WoT and 
iot.schema.org seems to do not make any reference to this topic in their specification (to be further 
investigated). 

 Quantities and quantity kinds 

A (physical) quantity is an observable property of an object or activity that can be measured numerically. 
Quantities are determined by two main attributes: kind and magnitude. The first attribute, a quantity 
kind, is the aspect of phenomenon being measured such as length or mass. The second attribute, a 
quantity value, is the magnitude of the quantity expressed as the product of a number and a unit.  ISQ 
defines seven base quantities and multiple derived quantities. ISQ base quantities include Length (l), Mass 
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(m), Time (t), Electric Current (I), Thermodynamic Temperature (T), Amount of Substance (n), and 
Luminous Intensity (Iv). 

There are at least three well-known design patterns to represent quantity kinds:  as individuals, as classes 
and as properties [16]. In the first design pattern, quantity kinds are represented as named individuals 
and asserted to a class that represents all quantity kinds. To specify that a quantity kind is more general 
or more specific than other quantity kind (e.g. the individual representing the quantity kind dry mass is 
more specific than the individual representing the quantity kind mass), a specific object property is used. 
In the second design pattern, quantity kinds as classes, quantity kinds are defined as classes and 
generalization or specialization relations are specified using subclass relations (e.g. the class 
representing the quantity kind dry mass is defined as a subclass of the class representing the quantity 
kind mass). In the third design pattern, quantity kinds as properties, quantity kinds are defined as 
properties and generalization or specialization relations are specified using subproperty relations (e.g. 
the property representing the quantity kind has dry mass is defined as a subproperty of the property 
representing the quantity kind has mass). Notice that in all design patterns, the definition of 
generalization and specialization relations are related to the notion of dimensions. Only quantity kinds 
of the same dimension can be part of this type of relations. 

ISO 15926-14 defines quantity kinds as subclasses of the class lis:PhysicalQuantity, following the design 
pattern quantity kind as classes. Generalization or specialization relations between quantity kinds are 
defined using subclass relations. This design pattern is also applied by BFO-IAO. The definition of the class 
lis:PhysicalQuantity does not include any class restriction to state relations with dimensions (not defined 
by ISO 15926-14) and types of units. In addition, the capability of supporting different systems units is 
not addressed by the current specification. 

QUDT defines quantity kinds as named individuals of the class qudt:QuantityKind, following the design 
pattern quantity kind as individuals. Generalization or specialization relations between quantity kinds are 
defined using the object properties qudt:generalization (or skos:broader) and qudt:specialization (or 
skos:narrower). In the latest releases of QUDT, we observed that SKOS semantic properties are replacing 
QUDT properties for defining generalization of specialization relations between quantity kinds. In 
addition to these object properties, there are other relevant properties worth mentioning: 

• qudt:dimensionVectorForSI relates an individual of type  quantity kind with an individual of type 
dimension vector (qudt:QuantityKindDimensionVector_SI) according to ISQ 

• qudt:symbol is a data property that relates an individual of type quantity kind with a string 
representing a symbol for the quantity kind 

• qudt:qkdvNumerator and qudt:qkdvDenominator are relevant properties when defining 
dimensionless quantities obtained as ratios of quantities that are not dimensionless (related to 
dimensional analysis) 

• qudt:applicableUnit relates an individual of type  quantity kind with one or more individuals 
representing applicable units of measure for this quantity kind  

In addition to the class qudt:QuantityKind, QUDT also defines the class qudt:Quantity, which represents a 
relation between quantity values of the same kind and related to the same entity. Thus, individuals of this 
class have a similar role as individuals of the class om:Quantity and lis:ScalarPhysicalQuantity. 

OM defines quantity kinds as subclasses of the class om:Quantity, following the design pattern quantity 
kind as classes. Generalization or specialization relations between quantity kinds are defined using 
subclass relations. The individuals of a class representing a quantity kind defines a relation between a 
phenomenon (or feature of interest) and the related quantity values. This is possible using the object 
properties om:hasValue and om:hasPhenomenon. In addition, the definition of each quantity kind restricts 
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the dimension and the type of units of measure that can be use in related quantity values. For instance, 
the class om:Mass includes the following class restrictions (in Manchester syntax): 

Class: om:Mass 

    SubClassOf: om:Quantity    SubClassOf: om:hasDimension value om:mass-Dimension 

    SubClassOf: om:hasValue only (om:hasUnit only om:MassUnit) 

 
OM also defines quantity kinds as individuals (using punning) but only to explicitly relate each quantity 
kind to relevant applicable units using the object property om:commonlyHasUnit. For instance, the 
individual om:Mass is related to the unit om:kilogram as follows (in Manchester syntax):  

Individual: om:Mass  
     Facts: om:commonlyHasUnit om:kilogram, … 

 
One main difference between OM and QUDT is that the former is heavily focused on ISQ (quantities and 
dimensions) and SI (units of measure), whereas QUDT tries to accommodate other systems of units 
including Imperial and USCS. In industry areas like oil & gas, it is still very common to use different 
systems of units. Accommodating different systems of units, however, increase modelling complexity as 
more specialized classes and properties are required.  

SOSA/SSN defines the class ssn:Property to refer to the properties of a feature of interest. This class is 
defined as a subclass of dul:Quality and it has as subclasses: sosa:ObservableProperty and 
sosa:ActuableProperty. SOSA/SSN does not stablish a preferable design pattern for modelling quantity 
kinds. However, it is suggested the possibility of using specific ontologies of units of measurement such 
as OM and QUDT that include definitions of quantity kinds27.  

WoT provides a mechanism to extend Thing Descriptions with additional Vocabulary Terms, named TD 
Context Extension. Using this mechanism is possible to refer to quantity kinds defined by specialised 
ontologies such as OM and QUDT (to be further investigated). In addition, the following mappings with 
SOSA/SSN has been identified (in Manchester syntax): 

Class: wot:Thing 
  SubClassOf: ssn:System or sosa:Platform or sosa:FeatureOfInterest 

Class: wot:InteractionAffordance 
  SubClassOf: ssn:forProperty some ssn:Property 

 
iot.schema.org defines the class iot:Property, which is a subclass of iot:InteractionPattern, to refer to the 
properties of a feature of interest. Subclasses of iot:Property such as iot:Temperature or iot:Humidity are 
examples of quantity kinds. Therefore, iot.schema.org adopted the design pattern quantity kinds as 
classes. The following properties are relevant in the definition of the class iot:Property: 

• iot:isPropertyOf stablishes relations with individuals of type iot:FeatureOfInterest 

• iot:isObservedBy stablishes relations with individuals of type iot:Sensor 

• iot:providedOutputData stablishes relations with individuals of type schema:PropertyValue (a 
property value-pair) or schema:PropertyValueSpecification  

• iot:acceptsInputData stablishes relations with individuals of type schema:PropertyValue (a 
property value-pair) or schema:PropertyValueSpecification  

 
27 https://www.w3.org/TR/vocab-ssn/#quantity-values-and-unit-of-measures  

https://www.w3.org/TR/vocab-ssn/#quantity-values-and-unit-of-measures
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 Units of measurement 

A unit of measurement is a definite magnitude of a quantity, defined and adopted by convention or by law, 
that is used as a standard for measurement of the same kind of quantity. For instance, the unit of 
measurement kilogram is defined in terms of the mass of the International Kilogram Prototype, a platinum 
cylinder stored at the International Bureau of Weights and Measures in France.  

Units of measurement are organised in systems of measurement (or units) that define rules between 
units. Popular systems of units include the International System of Units (SI), the Imperial System of Units 
(IS or Imperial) and the US Customary System of Units (USCS). SI is the only coherent system of 
measurement among them, meaning that all its units are either base units, which are units that cannot be 
expressed in terms of other units, or are derived from the base units without using any numerical factors 
other than one. SI defines seven base units, which are the second (time, s), metre (length, m), kilogram 
(mass, kg), ampere (electric current, A), kelvin (thermodynamic temperature, K), mole (amount of 
substance, mol), and candela (luminous intensity, cd). SI also defines twenty-two derived units including 
the Pascal (Pa), which is a used to quantify (internal) pressure, and it can be expressed using SI base units 
as follows: kg x m-1 x s-2. In addition, SI defines twenty prefixes that precede a unit of measurement to 
indicate a power-of-ten (i.e. decimal) multiple or sub-multiple of the unit. Notice that the use of prefixes 
with coherent SI units produce units that are no longer coherent, because the prefix introduces a 
numerical factor other than one. However, there is one exception in SI, for historical reasons. This is the 
kilogram, the only coherent SI unit which includes a prefix. 

Quantity values of the same kind are often represented using different units of measurement. Therefore, 
unit conversion becomes crucial to compare these quantities or to operate with them.  This is a multi-step 
process that commonly involves multiplication or division by a numerical factor, selection of the correct 
number of significant digits, and rounding. For quantities that do not fit into a ratio scale but into an 
interval scale, such as temperature, unit conversion involves also subtraction or addition of a numerical 
offset. For instance, the conversion from Celsius to Kelvin is done by adding the numerical offset 273.15 
to the numerical value of a quantity value. 

ISO 15926-14 includes the class lis:UnitOfMeasure for units of measurement, which is defined as a subclass 
of lis:InformationObject, and it has a subclass the class lis:Scale. Neither of these classes include any class 
restrictions that help to better understand their meaning and how their individuals are related with other 
individuals. The object property lis:datumUOM, with domain lis:QuantityDatum and range 
lis:UnitofMeasure, is defined to relate a quantity value to a unit of measurement (both represented as 
individuals). 

QUDT defines units as individuals of the class qudt:Unit. This class also has several subclasses including: 

• qudt:BaseUnit refers to base units defined by the systems of measurement considered in QUDT 
(e.g. unit:A, ampere) 

• qudt:DimensionlessUnit refers to quantities without units (e.g. unit:MACH, mach) 

o qudt:CurrencyUnit refers to currencies (e.g. unit:Euro, euro) 

o qudt:CountingUnit refers to counts of things (e.g. unit:PERCENT, percent) 

• qudt:LogarithmicUnit refers to (dimensionless) quantities in logarithmic scale using units (e.g. 
unit:DeciB, decibel) 

• qudt:PrefixUnit refers to the prefixes of prefixed units 

o qudt:BinaryPrefixUnit refers to binary prefixes (e.g. unit:Kibi, kilobinary) 
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o qudt:DecimalPrefixUnit refers to decimal prefixes (e.g. unit:Giga, giga) 

• qudt:ScaledUnit refers to prefixed units 

o qudt:BinaryScaledUnit refers to binary prefixed (e.g. unit:KiloBYTE, kilobyte) 

o qudt:DecimalScaledUnit refers to decimal prefixed units (e.g. unit:KiloGM, kilogram) 

• qudt:StandardsUnit refers to units defined by a system of measurement 

o qudt:NonSI-Unit refers to units defined by a system of measurement that it is not SI 

 qudt:CGS-Unit refers to units defined by the system of measurement CGS (e.g. 
unit:GM, gram) 

 qudt:ImperialUnit refers to units defined by the system of measurement Imperial 
(e.g. unit:HP, horsepower) 

 qudt:International-CustomaryUnit refers to units defined by the system of 
measurement International customary units  

 qudt:MKS-Unit refers to units defined by the system of measurement MKS (e.g. 
unit:M, metre) 

 qudt:US-CustomaryUnit refers to units defined by the system of measurement 
USCS (e.g. unit:IN, inch) 

o qudt:SI-Unit refers to units defined by the system of measurement SI (e.g. unit:KiloGM, 
kilogram ) 

o qudt:US-SurveyUnit refers to units defined by the system of measurement US survey units 
(e.g. unit:FT_US, US Survey Foot) 

The following properties represent a selection of all properties defined by QUDT with respect to the class 
qudt:Unit: 

• qudt:hasQuantityKind is an object property that refers to the related quantity kind 

• qudt:isUnitOfSystem is an object property that refers to related systems of measurement 

• qudt:iec61360Code is a data property with range string that refers to unit codes defined by IEC 
61360 

• qudt:ucumCode is a subproperty of the data property skos:notation with range typed literal that 
refers to a suitable UCUM code28  

• qudt:conversionMultiplier represents the conversion multiplier to be applied to the numerical 
value of any quantity defined using this unit to a base (or a reference derived) unit 

• qudt:conversionOffset represents the conversion offset to be applied to the numerical value of any 
quantity defined using this unit to a base (or a reference derived) unit 

 
28 https://ucum.org/trac  

https://ucum.org/trac
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• qudt:uneceCommonCode is a data property with range string that indicates the UN/CEFACT 
Common Code29. These codes are also supported by iot.schema.org  

• qudt:symbol is a data property with range string that indicates a recommended symbol to 
represent the unit according to QUDT 

For instance, the conversion multiplier and offset of the unit kilowatt hour (unit:KiloW-HR) are 3.6e6 and 
0.0, respectively. These values are defined with respect to the reference derived unit Joule (unit:J), which 
is of the same kind, and it has as conversion multiplier 1.0 and offset 0.0. So, 1.0 kilowatt hour is 
equivalent to 3.6e6 joules.  

OM defines units as individuals of the class om:Unit. This class does not have any class restriction but all 
individuals representing units of measurement has been asserted to this class. The class om:Unit also has 
many subclasses which nearly replicates the class hierarchy for quantity kinds. This facilitates the 
definition of class restrictions that state that quantity values of certain kind can only use units of 
measurement suitable for that kind. For instance, the class om:MassUnit represents all units defined by 
OM that are relevant for the quantity kind om:Mass and this class restricts the units for quantity values to 
be of type om:MassUnit as follows (in Manchester syntax): 

Class: om:Mass 
    SubClassOf: om:Quantity 
    SubClassOf: om:hasDimension value om:mass-Dimension 
    SubClassOf: om:hasValue only (om:hasUnit only om:MassUnit) 

 
The units included in the definition of om:MassUnit are not only SI units but also units for other systems 
of measurement including CGS, Imperial or USCS (the latter two are not defined specifically as a system 
of measurement in OM). The class om:MassUnit is defined as follows (in ManchesterSyntax): 

Class: om:MassUnit     
    SubClassOf:   om:Unit     
    EquivalentTo: om:PrefixedGram or om:PrefixedTonne or 
 om:PrefixedUnifiedAtomicMassUnit or ({om:InternationalUnit,  
 om:carat-Mass, om:grain, om:gram, om:hundredweight-British,  
 om:hundredweight-US, om:milligramRAE, om:ounceApothecaries,  
 om:ounceAvoirdupois, om:pennyweight-Troy, om:poundApothecaries,  
 om:poundAvoirdupois, om:slug, om:solarMass, om:ton-Long,  
 om:ton-Short, om:ton-ShortAssay, om:tonne, om:unifiedAtomicMassUnit}) 

In addition to the classes for types of units just mentioned earlier, OM defines few more specialised 
subclasses, some of them are related to compound units. The individuals of these classes have specific 
properties to define an exponent or to differentiate between two terms in a multiplication or division 
expression. The classes are the following: 

• om:CompoundUnit 

o om:UnitDivision refers to units defined as the division of two units (e.g. 
om:metrePerSecond-Time) 

o om:UnitExponentiation refers to units defined as the power of a reference unit (e.g. 
om:cubicMetre) 

o om:UnitMultiplication refers to units defined as the multiplication of two units (e.g. 
om:kilowattHour) 

 
29 https://www.unece.org/  

https://www.unece.org/
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• om:PrefixedUnit refers to units with a prefix (e.g. om:millimetre) 

• om:SingularUnit refers to units that are not compound units (e.g. om:ampere) 

The specification of the constituent units of a compound unit complements the information given by the 
related quantity kind (and the related dimension vector) and it helps to better understand the nature of 
the unit and how it is related to other units. As it was reported in [15], the class restrictions defined for 
the class om:PrefixedUnit and its subclasses have a strong impact on reasoning performances using the 
state of the art OWL 2 reasoner HermiT30. For practical applications, the definition of these classes must 
be revised. 

In addition to the issue of reasoning performances, many compound units do not include the necessary 
information to compute conversion of units. As it is reported in [15], this approach difficult the 
conversion of units using SPARQL, which is not a problem in QUDT. For instance, the unit 
om:kilowattHour does not include any conversion factor in its definition. Therefore, we need to find the 
information in the definition of its constituent units starting from the units om:kilowatt and om:hour. 
Another problem is that OM units do not have a conversion offset when they refer to quantities that do 
not fit in a ratio scale but in an interval scale (e.g. Temperature).  

SOSA/SSN indicates that the result of a sosa:Observation or a sosa:Actuation can be a quantity value. 
However, SOSA/SSN does not recommend any particular approach for modelling quantity values. It is 
suggested the possibility of using specific ontologies of units of measurement such as OM and QUDT. For 
instance, the class sosa:Result could be considered equivalent to the class om:Measure (or om:Point) 
defined by OM or the class qudt:QuantityValue defined by QUDT31.  

WoT includes in the definition of the class wot:DataSchema a collection of properties to describe data 
formats base on JSON-Schema32. A specific property, wot:unit, is defined to refer to unit of measurement 
as strings. WoT also provides a mechanism to extend Thing Descriptions with additional Vocabulary 
Terms, named TD Context Extension (to be further investigated). It seems this mechanism makes possible 
to refer to units of measurement defined by external vocabularies such as OM and QUDT ontologies (e.g. 
https://www.w3.org/TR/wot-thing-description/#example-28).   

iot.schema.org defines the data properties schema:unitCode and schema:unitText to indicate a unit of 
measurement related to a quantity value (of type schema:QuantitativeValue) or a property value (of type 
schema:QuantitativeValue). The range of the data property schema:unitCode is an URL or a string of unit 
code based on UN/CEFACT Common Code33. The range of the data property schema:unitText is a string 
and this property allows to name units using a different identifier than the ones defined by UN/CEFACT 
Common Code. This might allow the use of unit identifiers from OM or QUDT (to be further investigated). 

 Examples 

 

 Representation of quantity values 

This example illustrates how to represent a quantity value related to a physical quantity (kind) of a 
physical object. For quantity kinds, the modelling pattern quantity kinds as classes has been chosen. In the 
example, the individual hbig represents the physical object big hammer, which is of type Hammer. The 
individual hbig_mass of type Mass, represents that the hammer hbig has the physical quantity mass. The 
individual hbig_mass_datum of type MassQuantityDatum, represents a measurement of the mass of the 

 
30 http://www.hermit-reasoner.com/  
31 https://www.w3.org/TR/vocab-ssn/#quantity-values-and-unit-of-measures  
32 https://json-schema.org/  
33 https://github.com/schemaorg/schemaorg/wiki/Using-UN-CEFACT-Codes  

https://www.w3.org/TR/wot-thing-description/#example-28
http://www.hermit-reasoner.com/
https://www.w3.org/TR/vocab-ssn/#quantity-values-and-unit-of-measures
https://json-schema.org/
https://github.com/schemaorg/schemaorg/wiki/Using-UN-CEFACT-Codes
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hammer. The uncertainty of the measurement is represented using the data properties 
standardUncertainty and relativeStandardUncertainty (as it is done in QUDT). In addition, the 
measurement includes a timestamp indicating when it was taken. 

The class ScalarPhysicalQuantity represents scalar physical quantities only, where quantity values are of 
type ScalarQuantityDatum, meaning they are defined by a numerical value (cf. data property datumValue) 
and (in many cases) a unit of measurement (cf. object property datumUOM). It is expected a specific class 
for vector physical quantities (i.e. VectorPhysicalQuantity) but for the sake of simplicity is not included in 
the example.  

To emphasize the use of reasoning for detecting inconsistent statements, two class restrictions have been 
added, one for the class ex:Mass and one for the class MassQuantityDatum. These class restrictions, 
however, are insufficient for detecting inconsistencies (c.f. Annex E) but simpler enough to facilitate the 
understanding the diagram. 

 

Figure G9.1: Example of a measurement of the mass of a physical object  
 

 Representation of quantity values using short-cuts 

ISO/TR 15926-14 (page 18) recommends the use of short-cuts (c.f. Section E.5 in this document) to 
simplify modelling and improve reasoning performances by leaving out some classes and properties. The 
previous example can be simplified by replacing the individual hbig_mass_datum representing a quantity 
value with a data property assertion that relates the individual hbig (representing the physical object big 
hammer) with the numerical value 4.7^^xsd:float. This is done in this example using the data property 
hasMass_kg. This data property is annotated using two annotation properties: hasUnit and 
hasQuantityKind. The first one indicates the unit of measurement, in this case kilogram, and the second 
property indicates the quantity kind, which is Mass in the example. It becomes obvious that this approach 
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might not scale well in use cases dealing with many quantity kinds and units of measurement. In addition, 
the data property assertion hasMass_kg (hbig, 4.7^^xsd:float) is also annotated to indicate when the 
measurement was taken and additional information about the uncertainty of the measurement. 

In this example, it can be observed that quantity kinds are represented as individuals of the class 
InformationObject (similar as the unit of measurement kilogram) and not as an individual of the class 
Aspect like in the previous example. The individual massQuantityKind represents the notion of quantity 
kind Mass, whereas in the previous example, the individual hbig_mass represents that the object hbig has 
the physical quantity mass. Notice that quantity kinds represented as classes and individuals can coexist 
in the same ontology. 

 

Figure G9.2: Example of a measurement of the mass of a physical object using a short-cut 
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 Representation of quantity kinds and units of measurement 

This example illustrates some relevant properties and relations of quantity kinds and units of 
measurement. Notice that the class PhysicalQuantityKind describes properties of quantity kinds, whereas 
the class PhysicalQuantity is used to state that a physical object has a physical quantity. 

 

Figure G9.3: Example of quantity kinds and units of measurement 
 



 

112  

Bibliography 

[1]  ISO 15926-2:2004, Industrial automation systems and integration — Integration of life-cycle data 
for process plants including oil and gas production facilities — Part 2: Data model 

[2]   ISO/TS 15926-12:2018, Industrial automation systems and integration — Integration of life-cycle 
data for process plants including oil and gas production facilities — Part 12: Life-cycle integration 
ontology represented in Web Ontology Language (OWL) 

[3]    ISO/IEC 81346-1:2009, Industrial systems, installations and equipment and industrial products — 
Structuring principles and reference designations — Part 1: Basic rules 

[4]    Optique D11.5, Upper ontology for industrial OBDA applications (http://www.optique-
project.eu/wp-content/uploads/2016/11/D11.5.pdf) 

[5]    OWL 2 Web Ontology Language, Direct Semantics (Second Edition). W3C World Wide Web 
Consortium Recommendation 11 December 2012 (https://www.w3.org/TR/owl2-direct-
semantics/) 

[6]    OWL 2 Web Ontology Language, Document Overview (Second Edition). W3C World Wide Web 
Consortium Recommendation 11 December 2012 (https://www.w3.org/TR/owl2-overview/) 

[7]    OWL 2 Web Ontology Language, Manchester Syntax (Second Edition). W3C World Wide Web 
Consortium Working Group Note 11 December 2012 (https://www.w3.org/TR/owl2-
manchester-syntax/) 

[8]  OWL 2 Web Ontology Language, RDF-Based Semantics (Second Edition). W3C World Wide Web 
Consortium Recommendation 11 December 2012 (https://www.w3.org/TR/owl2-rdf-based-
semantics/) 

[9]  OWL 2 Web Ontology Language, Structural Specification and Functional-Style Syntax (Second 
Edition). W3C World Wide Web Consortium Recommendation 11 December 2012 
(https://www.w3.org/TR/owl2-syntax/) 

[10]  SKOS Simple Knowledge Organization System Reference. W3C World Wide Web Consortium 
Recommendation 18 August 2009 (https://www.w3.org/TR/skos-reference/) 

[11]  F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider and D. Nardi (Eds.). The Description 
Logic Handbook: Theory, implementation and applications (2nd edition). Cambridge University 
press, 2010. 

[12]  I. Horrocks, O. Kutz, U Sattler. The even more irresistible SROIQ. In Proceedings of the 10th 
International Conference on Principles of Knowledge Representation and Reasoning (KR 2006), 
volume 6, pages 57-67. AAAI Press, 2006. 

[13]   M. Knapp and F. Hasibether. Material master data quality. In Proceedings of the 17th International 
Conference on Concurrent Enterprising (ICE 2011). IEEE, 2011. 
https://www.researchgate.net/publication/261208530_Material_master_data_quality 

[14]  M. G. Skjæveland, A. Gjerver, C. M. Hansen, J.W. Klüwer, M.R. Strand, A. Waaler and P. Ø. Øverli. 
Semantic Material Master Data Management at Aibel. Proceedings of the ISWC 2018 Posters & 
Demonstrations, Industry and Blue Sky Ideas Tracks co-located with 17th International Semantic 
Web Conference (ISWC 2018). 

http://www.optique-project.eu/wp-content/uploads/2016/11/D11.5.pdf
http://www.optique-project.eu/wp-content/uploads/2016/11/D11.5.pdf
https://www.w3.org/TR/owl2-direct-semantics/
https://www.w3.org/TR/owl2-direct-semantics/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/owl2-manchester-syntax/
https://www.w3.org/TR/owl2-manchester-syntax/
https://www.w3.org/TR/owl2-rdf-based-semantics/
https://www.w3.org/TR/owl2-rdf-based-semantics/
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/skos-reference/
https://www.researchgate.net/publication/261208530_Material_master_data_quality


Working Draft (WD) Proposal for ISO 15926-14:2020(E) 

 113 

[15]  F. Martín-Recuerda, D. Walther, S. Eisinger, G. Moore, P. Andersen, P.-O. Opdahl and L. Hella. 
Revisiting ontologies of units of measure for harmonising quantity values – a use case. In 
Proceedings of the 20th International Semantic Web Conference (ISWC 2020). Springer, Athens 
(Greece), 2020. Accepted for publication. 

[16]  H. Rijgersberg, M. Van Assem and J. Top. Ontology of units of measure and related concepts. 
Semantic Web Journal, 4(1): 3-13, 2013. 

[17]  R. Arp, B. Smith and A.D. Spear. Building ontologies with basic formal ontology. MIT Press, 2015. 

[18]  S. S. Stevens. On the theory of scales of measurement. Science, 103 (2684): 677–680, 1946. 

[19]  ISO 80000-1:2009, Quantities and units — Part 1: Data model 

[20]  S. Kaebisch, T. Kamiya, M. McCool, V. Charpenay, M. Kovatsch. Web of Things (WoT) Thing 
Description.  W3C  Recommendation,  World  Wide  Web Consortium, October 2020. 
https://www.w3.org/TR/wot-thing-description/.  

[21]  A. Haller, K. Janowicz, S.J.D. Cox, D. Le Phuoc, K. Taylor, M. Lefrancois. Semantic  Sensor  Network  
Ontology.  W3C  Recommendation,  World  Wide  Web Consortium, October 2017. 
https://www.w3.org/TR/vocab-ssn/. 

[22]  M. Koster, D. Anicic, A.S. Thuluva. Schema.org Extensions for IoT. Technical Report. 
https://www.w3.org/WoT/.  

[23]  M.G. Skjæveland, D.P. Lupp, L.H. Karlsen, H. Forssell. Practical ontology pattern instantiation, 
discovery, and maintenance with reasonable ontology templates. In Proceedings of the 17th 
International Semantic Web Conference (ISWC 2018),Monterey, CA, USA. volume 11136, pages 
477-494. Springer (2018). 

[24]  https://orcid.org/0000-0002-7167-7321. Reified Requirements Ontology (Revision: A01A). 
https://w3id.org/requirement-ontology/ontology/core/A01A. [Accessed 23-09-2020].  

[25]  Standards Norway. Technical Information Requirements Catalog. https://tirc.epim.no/. [Accessed 
23 09 2020]. 

[26]  G. Casini, T. Meyer, K. Moodley, U. Sattler, and I. Varzinczak. Introducing defeasibility into OWL 
ontologies. In Proceedings of the 14th International Semantic Web Conference (ISWC 2015), 
volume 9367, pages 409–426, LNCS Springer, October 2015.  

 

https://www.w3.org/TR/wot-thing-description/
https://www.w3.org/TR/vocab-ssn/
https://www.w3.org/WoT/
https://orcid.org/0000-0002-7167-7321
https://w3id.org/requirement-ontology/ontology/core/A01A
https://tirc.epim.no/

	Foreword
	Introduction
	Purpose
	1 Scope
	2  Normative references
	3 Terms and definitions
	4 Basic concepts and assumptions
	5 Relation to reference data
	5.1 Relation to Part 2
	5.2 Relation to Part 4
	5.3 Relation to Part 7, 8, 11
	5.4 Relationship to Part 12

	6  Ontology
	7 Use Cases
	Annex A   (normative)  ISO 15926-14 Ontology
	A.1 Declarations
	A.1.1 Prefixes
	A.1.2 Ontology
	A.2 Classes
	A.2.1 Activity
	A.2.1.1  Activity > Event
	A.2.1.1.1 Activity > Event > PointInTime
	A.2.1.2 Activity > PeriodInTime
	A.2.2 Aspect
	A.2.2.1 Aspect > Quality
	A.2.2.1.1 Aspect > Quality > PhysicalQuantity
	A.2.2.2 Aspect > RealizableEntity
	A.2.2.2.1 Aspect > Realizability > Disposition
	A.2.2.2.1.1 Aspect > Realizability > Disposition > Function
	A.2.2.2.2 Aspect > Realizability > Role
	A.2.3 Object
	A.2.3.1 Object  > FunctionalObject
	A.2.3.1.1 Object  > FunctionalObject > System
	A.2.3.2 Object > InformationObject
	A.2.3.2.1 Object > InformationObject > QuantityDatum
	A.2.3.2.1.1 Object > InformationObject > QuantityDatum > ScalarQuantityDatum
	A.2.3.2.2 Object > InformationObject > UnitOfMeasure
	A.2.3.2.2.1 Object > InformationObject > UnitOfMeasure > Scale
	A.2.3.3 Object > Location
	A.2.3.3.1 Object > Location > Site
	A.2.3.3.2 Object > Location > SpatialLocation
	A.2.3.3.2.1 Object > Location > SpatialLocation > PointInSpace
	A.2.3.3.2.2 Object > Location > SpatialLocation > RegionInSpace
	A.2.3.4 Object > Organization
	A.2.3.5 Object > PhysicalObject
	A.2.3.5.1 Object > PhysicalObject > Compound
	A.2.3.5.2 Object > PhysicalObject > Feature
	A.2.3.5.3 Object > PhysicalObject > InanimatePhysicalObject
	A.2.3.5.3.1 Object > PhysicalObject > InanimatePhysicalObject > Phase
	A.2.3.5.3.2 Object > PhysicalObject > InanimatePhysicalObject > Stream
	A.2.3.5.4 Object > PhysicalObject > Organism
	A.2.3.5.4.1 Object > PhysicalObject > Organism > Person
	A.3 Object properties
	A.3.1 concretizedBy
	A.3.2 concretizes
	A.3.3 connectedTo
	A.3.3.1 connectedTo > directlyConnectedTo
	A.3.4 createdBy
	A.3.5 creates
	A.3.6 datumUOM
	A.3.7 dispositionOf
	A.3.7.1 dispositionOf > functionOf
	A.3.8 hasDisposition
	A.3.8.1 hasDisposition > hasFunction
	A.3.9 installedAs
	A.3.10 hasInstalled
	A.3.11 interestOf
	A.3.11.1 interestOf > approvedBy
	A.3.12 hasInterestIn
	A.3.12.1 hasInterestIn > approves
	A.3.13 partOf
	A.3.13.1 partOf > activityPartOf
	A.3.13.1.1 partOf > activityPartOf > activityBoundOf
	A.3.13.1.1.1 partOf > activityPartOf > activityBoundOf > begins
	A.3.13.1.1.2 partOf > activityPartOf > activityBoundOf > ends
	A.3.13.2 partOf > arrangedPartOf
	A.3.13.2.1 partOf > arrangedPartOf > assembledPartOf
	A.3.13.2.2 partOf > arrangedPartOf > featureOf
	A.3.13.3 partOf > functionalPartOf
	A.3.13.4 partOf > subLocationOf
	A.3.14 hasPart
	A.3.14.1 hasPart > hasActivityPart
	A.3.14.1.1 hasPart > hasActivityPart > hasActivityBound
	A.3.14.1.1.1 hasPart > hasActivityPart > hasActivityBound > hasBeginning
	A.3.14.1.1.2 hasPart > hasActivityPart > hasActivityBound > hasEnding
	A.3.14.2 hasPart > hasArrangedPart
	A.3.14.2.1 hasPart > hasArrangedPart > hasAssembledPart
	A.3.14.2.2 hasPart > hasArrangedPart > hasFeature
	A.3.14.3 hasPart > hasFunctionalPart
	A.3.14.4 hasPart > hasSubLocation
	A.3.15 participantIn
	A.3.16 hasParticipant
	A.3.17 qualityOf
	A.3.17.1 qualityOf > physicalQuantityOf
	A.3.18 hasQuality
	A.3.18.1 hasQuality > hasPhysicalQuantity
	A.3.19 roleOf
	A.3.20 hasRole
	A.3.21 installedAs
	A.3.22 hasInstalled
	A.3.23 isAbout
	A.3.23.1 isAbout > quantifiesQuality
	A.3.23.2 isAbout > represents
	A.3.24 representedIn
	A.3.24.1 representedIn > qualityQuantifiedAs
	A.3.24.2 representedIn > representedBy
	A.3.25 locatedRelativeTo
	A.3.25.1 locatedRelativeTo > containedBy
	A.3.25.2 locatedRelativeTo > contains
	A.3.25.3 locatedRelativeTo > residesIn
	A.3.25.4 locatedRelativeTo > hasResident
	A.3.26 occursRelativeTo
	A.3.26.1 occursRelativeTo > after
	A.3.26.2 occursRelativeTo > before
	A.3.26.2.1 occursRelativeTo > before > causes
	A.3.27 realizedIn
	A.3.28 realizes
	A.4 Data properties
	A.4.1 approvedOn
	A.4.2 datumValue
	A.4.3 qualityQuantityValue
	A.5 Annotation properties
	A.5.1 originatesFrom
	A.5.1.1 originatesFrom > transformedFrom
	A.5.1.2 originatesFrom > mergedFrom
	A.5.1.3 originatesFrom > splitFrom
	A.5.2 relatedEntity
	A.5.2.1 relatedEntity > relatedEntityISO15926
	A.5.2.2 relatedEntity > remodelsEntity
	A.5.2.2.1 relatedEntity > remodelsEntity > remodelsEntityISO15926
	A.5.2.3 relatedEntity > equivalentEntity
	A.5.2.3.1 relatedEntity > equivalentEntity > equivalentEntityISO15926
	A.5.2.4 relatedEntity > deprecatedEntity
	A.5.2.4.1 relatedEntity > deprecatedEntity > deprecatedEntityISO15926
	Annex B  (informative)  Mapping of entity types from ISO 15926-14 to ISO 15926-2
	Annex C  (informative)  Reference to electronic version of ontology
	Annex D  (informative)  Naming conventions
	D.1 Data property shortcuts
	D.2 Inverse relations
	Annex E  (informative)  Reasoning
	E.1 Automated classification from property values
	E.2 Information objects
	E.3 Qualities
	E.4 Necessary and sufficient conditions
	E.5 Adding shortcuts
	E.6 Functions
	E.7 Example: Checking conformance with requirements
	E.8 System, Functional objects and Physical objects
	E.9 Developing a design
	E.10 Design and replaceable parts: Adding product individuals
	E.11 Detecting the inconsistency
	Annex F  (informative)  Lifecycle information
	F.1 Lifecycle scenario of an object
	F.1.1 Evolving specifications
	F.1.2 Evolving instantiation
	F.1.3 Embedded specifications and instantiations
	F.2 Evolving resources
	F.2.1 Modelling
	F.2.1.1 Transform
	F.2.1.2 Merge
	F.2.1.3 Split
	Annex G  (informative)  Use cases
	G.1 Events and alarms
	G.1.1 Status
	G.1.2 Relevant references
	G.1.3 Examples
	G.1.3.1 Example of a simple heat detector and alarm
	G.1.3.2 Example of a heat detector and alarm suitable for more complex scenarios
	G.2 Physical-spatial
	G.2.1 Status
	G.2.2 Source data schemas and systems
	G.2.3 Modelling Example
	G.3 Piping and Instrumentation Diagram (P&ID)
	G.3.1 Status
	G.3.2 Source data
	G.3.3 Modelling
	G.3.3.1 ISO 15926-14 Context
	G.3.3.2 Example
	G.3.4 OTTR Templates
	G.3.4.1 Prefixes
	G.3.4.2 Interface Templates
	G.3.4.3 Modelling Templates
	G.3.4.4 Mapping tables into templates
	G.4 Software
	G.4.1 Status
	G.4.2 Source data schemas and systems
	G.4.3 Modelling
	G.4.3.1 ISO 15926-14 Context
	G.4.3.2 Example
	G.5 Product catalog
	G.5.1 Status
	G.5.2 Source data schemas and systems
	G.5.3 Modelling
	G.5.3.1 ISO 15926-14 Context
	G.5.3.2 Examples
	G.6 Aspect-based reference designation system
	G.6.1 Status
	G.6.2 Modelling
	G.6.2.1 Specification level
	G.6.2.2 Asset level
	G.6.2.3 Application level
	G.6.2.4 Linking the Levels
	G.6.2.5 Relation to ISO/IEC 81346 Tags
	G.6.3 Example
	G.7 Requirements
	G.7.1 Status
	G.7.2 Terminology
	G.7.3 Source data schemas and systems
	G.7.4 Modelling
	G.7.4.1 Reified Requirements
	G.7.4.2 Verifying Requirements
	G.7.4.2.1 Naïve Axiomatization
	G.7.4.2.2  Axiom with Exceptions
	G.7.4.2.3  Other approaches
	G.8 BoMs and BoPs
	G.8.1 Status
	G.8.2 Source data schemas and systems
	G.8.3 Modelling
	G.8.3.1 ISO 15926-14 Context
	G.8.3.2 Example
	G.8.3.3 Explanatory notes
	G.9 Physical quantities and units of measurement
	G.9.1 Status
	G.9.2 Terminology
	G.9.3 Relevant references
	G.9.4 Scope
	G.9.5 Discussion
	G.9.5.1 Prefixes
	G.9.5.2 Phenomenon (or feature of interest)
	G.9.5.3 Quantity values
	G.9.5.4 Systems of quantities and units
	G.9.5.5 Dimensions
	G.9.5.6 Quantities and quantity kinds
	G.9.5.7 Units of measurement
	G.9.6 Examples
	G.9.6.1 Representation of quantity values
	G.9.6.2 Representation of quantity values using short-cuts
	G.9.6.3 Representation of quantity kinds and units of measurement
	Bibliography

